Browse Source

Band elimination output init

master
Apostolos Fanakis 6 years ago
parent
commit
46fd3e670c
  1. 199
      Band Elimination Chebyshev/band_elimination_design.m

199
Band Elimination Chebyshev/band_elimination_design.m

@ -2,7 +2,7 @@
%% $DATE : 14-Aug-2018 15:32:12 $
%% $Revision : 1.00 $
%% DEVELOPED : 9.0.0.341360 (R2016a)
%% FILENAME : band_pass_design.m
%% FILENAME : band_elimination_design.m
%% AEM : 8261
%%
%% ========== DESIGN SPECIFICATIONS START ==========
@ -46,6 +46,27 @@ specification_high_stop_radial_frequency = 2*pi* ...
specification_min_stop_attenuation = 26+AEM(3)*5/9; % dB
specification_max_pass_attenuation = 0.5+AEM(4)/18; % dB
% Outputs results
fprintf(['\n' '===== DESIGN SPECIFICATIONS =====' '\n' ...
'Filter design specifications:\n' ...
'Central frequency = %.3fHz = %.3frad/s\n' ...
'Low pass frequency = %.3fHz = %.3frad/s\n' ...
'High pass frequency = %.3fHz = %.3frad/s\n' ...
'Low stop frequency = %.3fHz = %.3frad/s\n' ...
'High stop frequency = %.3fHz = %.3frad/s\n' ...
'Min stop attenuation = %.3fdB\n' ...
'Max pass attenuation = %.3fdB\n'], ...
specification_central_frequency, specification_central_radial_frequency, ...
specification_low_pass_frequency, ...
specification_low_pass_radial_frequency, ...
specification_high_pass_frequency, ...
specification_high_pass_radial_frequency, ...
specification_low_stop_frequency, ...
specification_low_stop_radial_frequency, ...
specification_high_stop_frequency, ...
specification_high_stop_radial_frequency, ...
specification_min_stop_attenuation, specification_max_pass_attenuation);
clear design_param_D
% ========== DESIGN SPECIFICATIONS END ==========
@ -73,19 +94,38 @@ design_geometric_central_radial_frequency = ...
design_filter_bandwidth = specification_high_pass_radial_frequency- ...
specification_low_pass_radial_frequency; % rad/s
% Outputs results
fprintf(['\n' '===== PROTOTYPE LOW PASS DESIGN SPECIFICATIONS =====' '\n' ...
'The prototype low pass filter will be designed with the\n' ...
'normalized stop radial frequency %.3frad/s, the normalized\n' ...
'pass radial frequency is equal to 1rad/s.\n' ...
'Min and max attenuation specifications remain the same.\n' ...
'\nThe filter bandwidth and geometric central frequency are also\n' ...
'calculated for later usage:\n' ...
'Filter bandwidth = %.3fHz = %.3frad/s\n' ...
'Geometric central frequency = %.3fHz = %.3frad/s\n' ...
'\nThe central frequency calculated is equal to the one given\n' ...
'in the specifications part, confirming the specifications\n' ...
'where calculated correctly.\n'], ...
prototype_normalized_stop_radial_frequency, ...
design_filter_bandwidth/(2*pi), design_filter_bandwidth, ...
design_geometric_central_radial_frequency/(2*pi), ...
design_geometric_central_radial_frequency);
% ========== PROTOTYPE LOW PASS DESIGN SPECIFICATIONS END ==========
%% ========== PROTOTYPE LOW PASS DESIGN START ==========
% The calculated low pass design specifications have a form fit for a low
% pass Chebyshev filter design (the pass radial frequency is normalized to
% one).
% unity).
% Designs the prototype normalized filter.
% Calculates the filter's order using the eq. 9-83
design_filter_order = ceil(acosh(((10^ ...
temp_filter_order = acosh(((10^ ...
(specification_min_stop_attenuation/10)-1)/(10^ ...
(specification_max_pass_attenuation/10)-1))^(1/2))/ ...
acosh(prototype_normalized_stop_radial_frequency));
acosh(prototype_normalized_stop_radial_frequency);
design_filter_order = ceil(temp_filter_order);
% Calculates epsilon parameter using the eq. 9-76
epsilon_parameter = sqrt(10^(specification_max_pass_attenuation/10)-1);
@ -190,11 +230,38 @@ else % Even number of poles
end
end
% Outputs results
fprintf(['\n' '===== PROTOTYPE LOW PASS DESIGN =====' '\n' ...
'A prototype low pass Chebyshev filter is designed with the\n' ...
'specifications previously calculated.\n\n' ...
'Filter order = %.3f\n' ...
'Filter order ceiling = %d\n' ...
'Epsilon parameter = %.3f\n' ...
'Alpha parameter = %.3f\n' ...
'Radial frequency at which half power occurs = %.3frad/s\n' ...
'Butterworth angles are ' char(177) '%.2f' char(176) ' and ' ...
char(177) '%.2f' char(176) '\n'], ...
temp_filter_order, design_filter_order, ...
epsilon_parameter, alpha_parameter, ...
design_half_power_radial_frequency, design_butterworth_angles(1,1), ...
design_butterworth_angles(1,2));
fprintf('\nLow pass Chebyshev poles found:\n');
for i=1:low_pass_prototype_number_of_poles
fprintf(['Pole %d:\t' '%.3f' char(177) ...
'%.3fi, radial frequency = %.3f, Q = %.3f\n'], ...
i, low_pass_prototype_poles_real_parts(1,i), ...
low_pass_prototype_poles_imaginary_parts(1,i), ...
low_pass_prototype_poles_radial_frequencies(1,i), ...
low_pass_prototype_poles_Q(1,i));
end
% Clears unneeded variables from workspace
clearVars = {'prototype_normalized_stop_radial_frequency', ...
'epsilon_parameter', 'alpha_parameter', 'theta'};
'epsilon_parameter', 'alpha_parameter', 'theta', 'temp_filter_order'};
clear(clearVars{:})
clear clearVars
% ========== PROTOTYPE LOW PASS DESIGN END ==========
%% ========== LOW PASS TO HIGH PASS TRANSFORMATION START ==========
@ -240,13 +307,28 @@ for i=1:high_pass_prototype_number_of_poles
sind(high_pass_prototype_poles_angles(1,i));
end
% Outputs results
fprintf(['\n' '===== LOW PASS TO HIGH PASS TRANSFORMATION =====' '\n' ...
'The prototype low pass Chebyshev filter is transformed into\n' ...
'a high pass Chebyshev using the transformation S = 1/s.\n']);
fprintf('\nHigh pass Chebyshev poles found:\n');
for i=1:low_pass_prototype_number_of_poles
fprintf(['Pole %d:\t' '%.3f' char(177) ...
'%.3fi, radial frequency = %.3f, Q = %.3f, angle = ' ...
char(177) '%.2f' char(176) '\n'], ...
i, high_pass_prototype_poles_real_parts(1,i), ...
high_pass_prototype_poles_imaginary_parts(1,i), ...
high_pass_prototype_poles_radial_frequencies(1,i), ...
high_pass_prototype_poles_Q(1,i), ...
high_pass_prototype_poles_angles(1,i));
end
% Clears unneeded variables from workspace
%
clearVars = {'i', 'high_pass_prototype_poles_radial_frequencies', ...
'high_pass_prototype_poles_Q', 'high_pass_prototype_poles_angles'};
clear(clearVars{:})
clear clearVars
%
clear -regexp ^low_pass_prototype_
% ========== LOW PASS TO HIGH PASS TRANSFORMATION END ==========
@ -348,6 +430,26 @@ for i=1:high_pass_prototype_number_of_poles
end
end
% Outputs results
fprintf(['\n' '===== HIGH PASS TO BAND ELIMINATION TRANSFORMATION =====' '\n' ...
'The high pass Chebyshev filter is transformed into a band elimination\n' ...
'Chebyshev using the Geffe algorithm to transform the poles.\n']);
fprintf('\nBand elimination Chebyshev poles found:\n');
for i=1:band_elimination_number_of_poles
fprintf(['Pole %d:\t' 'radial frequency = %.3f, Q = %.3f, angle = ' ...
char(177) '%.2f' char(176) '\n'], ...
i, band_elimination_poles_radial_frequencies(1,i), ...
band_elimination_poles_Q(1,i), ...
band_elimination_poles_angle(1,i));
end
fprintf('\nTransfer function zeros:\n');
for i=1:length(band_elimination_transfer_function_zeros)
fprintf(['Zero %d:\t' '0%+.3fi\n'], ...
i, imag(band_elimination_transfer_function_zeros(1,i)));
end
% Clears unneeded variables from workspace
clearVars = {'i', 'temp_index'};
clear(clearVars{:})
@ -355,6 +457,7 @@ clear clearVars
clear -regexp ^high_pass_prototype_
clear -regexp ^geffe_
clear -regexp ^transformation_
% ========== POLES TRANSFORMATION END ==========
%% ========== ZEROS-POLES GROUPING START ==========
@ -386,7 +489,7 @@ clear -regexp ^transformation_
%% ========== UNITS IMPLEMENTATION START ==========
% AEM(3) = 6, so the circuits shown in 7.21 and 7.23 are going to be used
% for the low pass notch units.
% for the notch units.
% High pass notch units 1 and 3
% Initializes necessary arrays, each array is 1X2, the first element (1,1)
@ -594,6 +697,63 @@ for i=1:2
low_pass_notch_units_gains_high(1,i);
end
% Outputs results
fprintf(['\n' '===== UNITS IMPLEMENTATION =====' '\n' ...
'Pole-zero pairing results in the implementation of two high\n' ...
'pass notch (HPN) units and two low pass notch (LPN) units.\n' ...
'\nUnits implementation details:\n']);
for i=1:band_elimination_number_of_poles
if i==1 || i==3
fprintf(['Unit %d (HPN):\n' ...
'\tPole radial frequency = %.3f\n'...
'\tPole Q = %.3f\n' ...
'\tTransfer function zero = 0' char(177) '%.3fi\n' ...
'\tCircuit elements:\n' ...
'\t\tR1 = %.3fOhm\n' ...
'\t\tR2 = %.3fOhm\n' ...
'\t\tR3 = %.3fOhm\n' ...
'\t\tR4 = %.3fOhm\n' ...
'\t\tC = %.7fF\n' ...
'\t\tC1 = %.9fF\n' ...
'\tUnit gain at high frequencies = %.3f\n'], ...
i, band_elimination_poles_radial_frequencies(1,i), ...
band_elimination_poles_Q(1,i), ...
abs(imag(band_elimination_transfer_function_zeros(1,i))), ...
high_pass_notch_units_R1(1,(i+1)/2), ...
high_pass_notch_units_R2(1,(i+1)/2), ...
high_pass_notch_units_R3(1,(i+1)/2), ...
high_pass_notch_units_R4(1,(i+1)/2), ...
high_pass_notch_units_C(1,(i+1)/2), ...
high_pass_notch_units_C1(1,(i+1)/2), ...
high_pass_notch_units_gain_high(1,(i+1)/2));
else
fprintf(['Unit %d (LPN):\n' ...
'\tPole radial frequency = %.3f\n'...
'\tPole Q = %.3f\n' ...
'\tTransfer function zero = 0' char(177) '%.3fi\n' ...
'\tCircuit elements:\n' ...
'\t\tR1 = %.3fOhm\n' ...
'\t\tR2 = %.3fOhm\n' ...
'\t\tR3 = %.3fOhm\n' ...
'\t\tR4 = %.3fOhm\n' ...
'\t\tR5 = %.3fOhm\n' ...
'\t\tC = %.7fF\n' ...
'\tUnit gain at low frequencies = %.3f\n' ...
'\tUnit gain at high frequencies = %.3f\n'], ...
i, band_elimination_poles_radial_frequencies(1,i), ...
band_elimination_poles_Q(1,i), ...
abs(imag(band_elimination_transfer_function_zeros(1,i))), ...
low_pass_notch_units_resistors_1(1,i/2), ...
low_pass_notch_units_resistors_2(1,i/2), ...
low_pass_notch_units_resistors_3(1,i/2), ...
low_pass_notch_units_resistors_4(1,i/2), ...
low_pass_notch_units_resistors_5(1,i/2), ...
low_pass_notch_units_capacitors(1,i/2), ...
low_pass_notch_units_gains_low(1,i/2), ...
low_pass_notch_units_gains_high(1,i/2));
end
end
% Clears unneeded variable from workspace
clearVars = {'i', 'temp', 'unit_index', 'normalized_transfer_function_zero'};
clear(clearVars{:})
@ -622,6 +782,17 @@ total_transfer_function = series(series(series( ...
total_transfer_function = total_transfer_function*unit_adjustment_gain;
fprintf(['\n' '===== GAIN ADJUSTMENT =====' '\n' ...
'A gain adjustment unit is needed to achieve 0dB attenuation at ' ...
'pass band.\n' ...
'We arbitrarily choose to use a 10KOhm series resistor.\n' ...
'The feedback resistor is %.3fOhm to get a gain equal to %.3fdB\n'], ...
unit_adjustment_feedback_resistor, unit_adjustment_gain);
% ========== GAIN ADJUSTMENT END ==========
%% ========== TRANSFER FUNCTIONS START ==========
%{
ltiview(high_pass_notch_units_transfer_functions(1,1), ...
high_pass_notch_units_transfer_functions(1,2));
@ -649,16 +820,14 @@ ltiview(high_pass_notch_units_transfer_functions(1,1), ...
%ltiview(total_transfer_function);
%
%{
plot_transfer_function(total_transfer_function, ...
[specification_central_frequency ...
band_elimination_poles_radial_frequencies(1,1)/(2*pi) ...
design_half_power_radial_frequency*specification_low_pass_radial_frequency/(2*pi) ...
specification_low_stop_frequency ...
[specification_low_stop_frequency ...
specification_low_pass_frequency ...
specification_central_frequency ...
specification_high_pass_frequency ...
specification_high_stop_frequency]);
%
%}
% Clears unneeded variable from workspace
clearVars = {'total_transfer_function'};
@ -666,4 +835,4 @@ clear(clearVars{:})
clear clearVars
clear -regexp _transfer_functions$
% ========== GAIN ADJUSTMENT END ==========
% ========== TRANSFER FUNCTIONS END ==========
Loading…
Cancel
Save