Browse Source

Minor fixes

master
Apostolos Fanakis 6 years ago
parent
commit
7ef8058639
  1. 24
      Band Elimination Chebyshev/band_elimination_design.m
  2. 22
      Band Pass Chebyshev/band_pass_design.m
  3. 10
      High Pass Butterworth/high_pass_design.m
  4. 18
      report/2_band_pass/2_band_pass_design.pug
  5. 280
      report/2_band_pass/assets/diagrams/matlab_band_pass_chebyshev_zero_pole.svg

24
Band Elimination Chebyshev/band_elimination_design.m

@ -536,22 +536,22 @@ for i=1:2
(1/normalized_transfer_function_zero^2);
% Calculates R2 using the eq. 7-138
high_pass_notch_units_R2(1,i) = band_elimination_poles_Q(1,unit_index)^2* ...
(high_pass_notch_units_k1(1,i)+2)^2;
(high_pass_notch_units_k1(1,i)+2)^2; % Ohm
% Assumes that R3 is 1 Ohm and the radial frequency is 1 rad/s
high_pass_notch_units_R3(1,i) = 1;
high_pass_notch_units_R3(1,i) = 1; % Ohm
% Calculates R4 using the eq. 7-139
high_pass_notch_units_R4(1,i) = (high_pass_notch_units_k1(1,i)+2)* ...
band_elimination_poles_Q(1,unit_index)^2;
band_elimination_poles_Q(1,unit_index)^2; % Ohm
% Calculates C using the eq. 7-140
high_pass_notch_units_C(1,i) = 1/ ...
(band_elimination_poles_Q(1,unit_index)* ...
(high_pass_notch_units_k1(1,i)+2));
(high_pass_notch_units_k1(1,i)+2)); % Farad
% Initial axioms of the design were:
% C1 = k1 * C
high_pass_notch_units_C1(1,i) = high_pass_notch_units_k1(1,i)* ...
high_pass_notch_units_C(1,i);
high_pass_notch_units_C(1,i); % Farad
% R1 = 1 Ohm
high_pass_notch_units_R1(1,i) = 1;
high_pass_notch_units_R1(1,i) = 1; % Ohm
% Selects the appropriate frequency scale factor to transfer the
% normalized radial frequency back to the original
@ -565,19 +565,19 @@ for i=1:2
% Performs scaling
high_pass_notch_units_R1(1,i) = high_pass_notch_units_R1(1,i)* ...
high_pass_notch_units_amplitude_scale_factors(1,i);
high_pass_notch_units_amplitude_scale_factors(1,i); % Ohm
high_pass_notch_units_R2(1,i) = high_pass_notch_units_R2(1,i)* ...
high_pass_notch_units_amplitude_scale_factors(1,i);
high_pass_notch_units_amplitude_scale_factors(1,i); % Ohm
high_pass_notch_units_R3(1,i) = high_pass_notch_units_R3(1,i)* ...
high_pass_notch_units_amplitude_scale_factors(1,i);
high_pass_notch_units_amplitude_scale_factors(1,i); % Ohm
high_pass_notch_units_R4(1,i) = high_pass_notch_units_R4(1,i)* ...
high_pass_notch_units_amplitude_scale_factors(1,i);
high_pass_notch_units_amplitude_scale_factors(1,i); % Ohm
high_pass_notch_units_C(1,i) = high_pass_notch_units_C(1,i)/ ...
(high_pass_notch_units_frequency_scale_factors(1,i)* ...
high_pass_notch_units_amplitude_scale_factors(1,i));
high_pass_notch_units_amplitude_scale_factors(1,i)); % Farad
high_pass_notch_units_C1(1,i) = high_pass_notch_units_C1(1,i)/ ...
(high_pass_notch_units_frequency_scale_factors(1,i)* ...
high_pass_notch_units_amplitude_scale_factors(1,i));
high_pass_notch_units_amplitude_scale_factors(1,i)); % Farad
% Builds unit's transfer function using the eq. 7-129, 7-130, 7-131
high_pass_notch_unit_numerator = [1 ...

22
Band Pass Chebyshev/band_pass_design.m

@ -394,12 +394,12 @@ for i=1:band_pass_number_of_poles
units_BW(1,i) = band_pass_poles_radial_frequencies(1,i)/ ...
band_pass_poles_Q(1,i);
% Calculates C21 (=C22=C) using the eq. 7-87
units_C21(1,i) = 1/(2*band_pass_poles_Q(1,i));
units_C22(1,i) = units_C21(1,i);
units_C21(1,i) = 1/(2*band_pass_poles_Q(1,i)); % Farad
units_C22(1,i) = units_C21(1,i); % Farad
% Using the eq. 7-86
units_R1(1,i) = 1;
units_R1(1,i) = 1; % Ohm
% Calculates R12 using the eq. 7-87
units_R2(1,i) = 4*band_pass_poles_Q(1,i)^2;
units_R2(1,i) = 4*band_pass_poles_Q(1,i)^2; % Ohm
% Selects the appropriate frequency scale factor to transfer the
% normalized radial frequency back to the original
@ -411,10 +411,10 @@ for i=1:band_pass_number_of_poles
(units_frequency_scale_factors(1,i)*0.1*10^(-6));
% Scales the circuit elements
units_C21(1,i) = 0.1*10^(-6);
units_C22(1,i) = 0.1*10^(-6);
units_R1(1,i) = units_amplitude_scale_factors(1,i);
units_R2(1,i) = units_R2(1,i)*units_amplitude_scale_factors(1,i);
units_C21(1,i) = 0.1*10^(-6); % Farad
units_C22(1,i) = 0.1*10^(-6); % Farad
units_R1(1,i) = units_amplitude_scale_factors(1,i); % Ohm
units_R2(1,i) = units_R2(1,i)*units_amplitude_scale_factors(1,i); % Ohm
% Calculates the gain at the central radial frequency and the alpha
% parameter using the eq. 7-89
@ -434,9 +434,9 @@ for i=1:band_pass_number_of_poles
% Calculates the values of the resistors used to diminish the entry
% using the eq. 7-90 (to include the scaling already done the equations
% are used in the form presented at example 7.2)
units_Z2(1,i) = units_R1(1,i)/units_alpha(1,i);
units_Z3(1,i) = units_R1(1,i)/(1-units_alpha(1,i));
unit_Z_parallel = (units_Z2(1,i)*units_Z3(1,i))/(units_Z2(1,i)+units_Z3(1,i));
units_Z2(1,i) = units_R1(1,i)/units_alpha(1,i); % Ohm
units_Z3(1,i) = units_R1(1,i)/(1-units_alpha(1,i)); % Ohm
unit_Z_parallel = (units_Z2(1,i)*units_Z3(1,i))/(units_Z2(1,i)+units_Z3(1,i)); % Ohm
%
unit_numerator = [-1/(units_Z2(1,i)*units_C21(1,i)) ...

10
High Pass Butterworth/high_pass_design.m

@ -314,7 +314,7 @@ units_transfer_functions = [tf(1) tf(1)];
for i=1:high_pass_number_of_poles
% Calculates k and r2 using the eq. 6-75
units_r2(1,i) = 2-1/high_pass_poles_Q(1,i);
units_r2(1,i) = 2-1/high_pass_poles_Q(1,i); % Ohm
units_k(1,i) = 3-1/high_pass_poles_Q(1,i);
% Selects the appropriate frequency scale factor to transfer the
@ -329,12 +329,12 @@ for i=1:high_pass_number_of_poles
% Performs scaling
units_R(1,i) = units_R(1,i)* ...
units_amplitude_scale_factors(1,i);
units_C(1,i) = 0.1*10^(-6);
units_amplitude_scale_factors(1,i); % Ohm
units_C(1,i) = 0.1*10^(-6); % Farad
units_r1(1,i) = units_r1(1,i)* ...
units_amplitude_scale_factors(1,i);
units_amplitude_scale_factors(1,i); % Ohm
units_r2(1,i) = units_r2(1,i)* ...
units_amplitude_scale_factors(1,i);
units_amplitude_scale_factors(1,i); % Ohm
% Builds unit's transfer function
% Builds numerator and denominator of the transfer function using the

18
report/2_band_pass/2_band_pass_design.pug

@ -21,7 +21,7 @@ h4 Υπολογισμός συνάρτησης μεταφοράς
p Αρχικά υπολογίζεται η κεντρική συχνότητα χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 11-2]:
p.latex-equation.
$$\omega_0 = \sqrt{\omega_1\omega_2}=\sqrt{5026.548*6361.725}=5654.867$$
$$\omega_0 = \sqrt{\omega_1\omega_2}=\sqrt{5026.548*6361.725}=5654.867\frac{\text{rad}}{\text{s}}$$
p.
Η κεντρική συχνότητα που υπολογίστηκε προκύπτει ίση με αυτή που δίνεται στην εκφώνηση, επιβεβαιώνεται έτσι ότι οι συχνότητες ω#[sub 1] - ω#[sub 4] υπολογίστηκαν σωστά.
@ -30,7 +30,7 @@ p.
Υπολογίζεται το εύρος ζώνης διόδου χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 11-52]:
p.latex-equation.
$$bw = \omega_2-\omega_1=6361.725-5026.548=1335.177$$
$$bw = \omega_2-\omega_1=6361.725-5026.548=1335.177\text{ rad}$$
p.
Σχεδιάζεται ένα πρότυπο κατωδιαβατό Chebyshev φίλτρο, το οποίο αργότερα θα μετατραπεί στο επιθυμητό ζωνοδιαβατό Chebyshev.
@ -46,7 +46,7 @@ p Οι προδιαγραφές απόσβεσης παραμένουν ίδιε
p Υπολογίζεται η τάξη του φίλτρου χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 9-83]:
p.latex-equation.
$$n = \left \lceil \frac{cos^{-1}\bigg(\sqrt{\frac{10^{\frac{a_{min}}{10}}-1}{10^{\frac{a_{max}}{10}}-1}}\bigg)}{cosh^{-1}\Omega_S} \right \rceil = \left \lceil \frac{cos^{-1}\bigg(\sqrt{\frac{10^{2.8556}-1}{10^{0.0667}-1}}\bigg)}{cosh^{-1}(2.2)} \right \rceil = \left \lceil \frac{4.87789}{1.42542} \right \rceil = \left \lceil 3.422 \right \rceil = 4$$
$$n = \left \lceil \frac{\cosh^{-1}\bigg(\sqrt{\frac{10^{\frac{a_{min}}{10}}-1}{10^{\frac{a_{max}}{10}}-1}}\bigg)}{\cosh^{-1}\Omega_S} \right \rceil = \left \lceil \frac{\cosh^{-1}\bigg(\sqrt{\frac{10^{2.8556}-1}{10^{0.0667}-1}}\bigg)}{\cosh^{-1}(2.2)} \right \rceil = \left \lceil \frac{4.87789}{1.42542} \right \rceil = \left \lceil 3.422 \right \rceil = 4$$
p.
Από τον παραπάνω τύπο φαίνεται ότι κατά τον υπολογισμό της τάξης του φίλτρου γίνεται στρογγυλοποίηση της τάξης προς τον επόμενο #[strong μεγαλύτερο] ακέραιο. Αυτό γίνεται επειδή δεν είναι δυνατή η υλοποίηση ενός φίλτρου ρητής τάξεως, έτσι είναι απαραίτητο η τάξη να στρογγυλοποιηθεί. Η στρογγυλοποίηση είναι σημαντικό να γίνει προς τα επάνω (ceiling) ώστε να επιτευχθούν οι προδιαγραφές του φίλτρου. Μία πιθανή στρογγυλοποίηση προς τα κάτω θα είχε ως αποτέλεσμα την αποτυχία στη σχεδίαση.
@ -224,6 +224,9 @@ figure.block-center.width-15cm
tr
td Q
td 10.9546
tr
td ω#[sub z]
td 0+0j
tr
td Angle
td ±87.38°
@ -352,6 +355,9 @@ figure.block-center.width-15cm
tr
td Q
td 10.9546
tr
td ω#[sub z]
td 0+0j
tr
td Angle
td ±87.38°
@ -480,6 +486,9 @@ figure.block-center.width-15cm
tr
td Q
td 26.599
tr
td ω#[sub z]
td 0+0j
tr
td Angle
td ±88.92°
@ -608,6 +617,9 @@ figure.block-center.width-15cm
tr
td Q
td 26.599
tr
td ω#[sub z]
td 0+0j
tr
td Angle
td ±88.92°

280
report/2_band_pass/assets/diagrams/matlab_band_pass_chebyshev_zero_pole.svg

@ -1,7 +1,7 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 19.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="751.7 -37.6 1340.9 823.3" style="enable-background:new 751.7 -37.6 1340.9 823.3;" xml:space="preserve">
viewBox="903.7 -12.6 1526.9 776.3" style="enable-background:new 903.7 -12.6 1526.9 776.3;" xml:space="preserve">
<style type="text/css">
.st0{fill:none;stroke:#262626;stroke-width:0.6667;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:0.149;}
.st1{fill:none;stroke:#262626;stroke-width:0.6667;stroke-linecap:square;stroke-linejoin:round;stroke-miterlimit:10;}
@ -17,162 +17,174 @@
</style>
<g>
<g>
<line class="st0" x1="2054" y1="776" x2="752" y2="776"/>
<line class="st0" x1="2054" y1="709.8" x2="752" y2="709.8"/>
<line class="st0" x1="2054" y1="643.7" x2="752" y2="643.7"/>
<line class="st0" x1="2054" y1="577.5" x2="752" y2="577.5"/>
<line class="st0" x1="2054" y1="511.3" x2="752" y2="511.3"/>
<line class="st0" x1="2054" y1="445.2" x2="752" y2="445.2"/>
<line class="st0" x1="2054" y1="312.8" x2="752" y2="312.8"/>
<line class="st0" x1="2054" y1="246.7" x2="752" y2="246.7"/>
<line class="st0" x1="2054" y1="180.5" x2="752" y2="180.5"/>
<line class="st0" x1="2054" y1="114.3" x2="752" y2="114.3"/>
<line class="st0" x1="2054" y1="48.2" x2="752" y2="48.2"/>
<line class="st0" x1="2054" y1="-18" x2="752" y2="-18"/>
<line class="st1" x1="752" y1="379" x2="2054" y2="379"/>
<line class="st1" x1="2054" y1="776" x2="2054" y2="-18"/>
<line class="st1" x1="2054" y1="776" x2="2041" y2="776"/>
<line class="st1" x1="2054" y1="709.8" x2="2041" y2="709.8"/>
<line class="st1" x1="2054" y1="643.7" x2="2041" y2="643.7"/>
<line class="st1" x1="2054" y1="577.5" x2="2041" y2="577.5"/>
<line class="st1" x1="2054" y1="511.3" x2="2041" y2="511.3"/>
<line class="st1" x1="2054" y1="445.2" x2="2041" y2="445.2"/>
<line class="st1" x1="2054" y1="312.8" x2="2041" y2="312.8"/>
<line class="st1" x1="2054" y1="246.7" x2="2041" y2="246.7"/>
<line class="st1" x1="2054" y1="180.5" x2="2041" y2="180.5"/>
<line class="st1" x1="2054" y1="114.3" x2="2041" y2="114.3"/>
<line class="st1" x1="2054" y1="48.2" x2="2041" y2="48.2"/>
<line class="st1" x1="2054" y1="-18" x2="2041" y2="-18"/>
</g>
<g transform="translate(1525.3334,867)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-6000</text>
</g>
<g transform="translate(1525.3334,800.8333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-5000</text>
</g>
<g transform="translate(1525.3334,734.6667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-4000</text>
</g>
<g transform="translate(1525.3334,668.5)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-3000</text>
</g>
<g transform="translate(1525.3334,602.3333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-2000</text>
</g>
<g transform="translate(1525.3334,536.1667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-1000</text>
</g>
<g transform="translate(1525.3334,403.8333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">1000</text>
</g>
<g transform="translate(1525.3334,337.6667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">2000</text>
</g>
<g transform="translate(1525.3334,271.5)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">3000</text>
</g>
<g transform="translate(1525.3334,205.3333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">4000</text>
</g>
<g transform="translate(1525.3334,139.1667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">5000</text>
</g>
<g transform="translate(1525.3334,73)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">6000</text>
</g>
<g transform="translate(869.0008,70.25)">
<text transform="matrix(1 0 0 1 479 -95)" class="st5 st6">Zero-Poles plot</text>
<line class="st0" x1="2392" y1="754" x2="904" y2="754"/>
<line class="st0" x1="2392" y1="700.6" x2="904" y2="700.6"/>
<line class="st0" x1="2392" y1="647.3" x2="904" y2="647.3"/>
<line class="st0" x1="2392" y1="593.9" x2="904" y2="593.9"/>
<line class="st0" x1="2392" y1="540.6" x2="904" y2="540.6"/>
<line class="st0" x1="2392" y1="487.2" x2="904" y2="487.2"/>
<line class="st0" x1="2392" y1="433.9" x2="904" y2="433.9"/>
<line class="st0" x1="2392" y1="327.1" x2="904" y2="327.1"/>
<line class="st0" x1="2392" y1="273.8" x2="904" y2="273.8"/>
<line class="st0" x1="2392" y1="220.4" x2="904" y2="220.4"/>
<line class="st0" x1="2392" y1="167.1" x2="904" y2="167.1"/>
<line class="st0" x1="2392" y1="113.7" x2="904" y2="113.7"/>
<line class="st0" x1="2392" y1="60.4" x2="904" y2="60.4"/>
<line class="st0" x1="2392" y1="7" x2="904" y2="7"/>
<line class="st1" x1="904" y1="380.5" x2="2392" y2="380.5"/>
<line class="st1" x1="2392" y1="754" x2="2392" y2="7"/>
<line class="st1" x1="2392" y1="754" x2="2377.1" y2="754"/>
<line class="st1" x1="2392" y1="700.6" x2="2377.1" y2="700.6"/>
<line class="st1" x1="2392" y1="647.3" x2="2377.1" y2="647.3"/>
<line class="st1" x1="2392" y1="593.9" x2="2377.1" y2="593.9"/>
<line class="st1" x1="2392" y1="540.6" x2="2377.1" y2="540.6"/>
<line class="st1" x1="2392" y1="487.2" x2="2377.1" y2="487.2"/>
<line class="st1" x1="2392" y1="433.9" x2="2377.1" y2="433.9"/>
<line class="st1" x1="2392" y1="327.1" x2="2377.1" y2="327.1"/>
<line class="st1" x1="2392" y1="273.8" x2="2377.1" y2="273.8"/>
<line class="st1" x1="2392" y1="220.4" x2="2377.1" y2="220.4"/>
<line class="st1" x1="2392" y1="167.1" x2="2377.1" y2="167.1"/>
<line class="st1" x1="2392" y1="113.7" x2="2377.1" y2="113.7"/>
<line class="st1" x1="2392" y1="60.4" x2="2377.1" y2="60.4"/>
<line class="st1" x1="2392" y1="7" x2="2377.1" y2="7"/>
</g>
<g transform="translate(1743.3334,816)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">-7000</text>
</g>
<g transform="translate(1743.3334,762.6429)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">-6000</text>
</g>
<g transform="translate(1743.3334,709.2857)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">-5000</text>
</g>
<g transform="translate(1743.3334,655.9286)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">-4000</text>
</g>
<g transform="translate(1743.3334,602.5714)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">-3000</text>
</g>
<g transform="translate(1743.3334,549.2143)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">-2000</text>
</g>
<g transform="translate(1743.3334,495.8571)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">-1000</text>
</g>
<g transform="translate(1743.3334,389.1429)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">1000</text>
</g>
<g transform="translate(1743.3334,335.7857)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">2000</text>
</g>
<g transform="translate(1743.3334,282.4286)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">3000</text>
</g>
<g transform="translate(1743.3334,229.0714)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">4000</text>
</g>
<g transform="translate(1743.3334,175.7143)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">5000</text>
</g>
<g transform="translate(1743.3334,122.3571)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">6000</text>
</g>
<g transform="translate(1743.3334,69)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st2 st3 st4">7000</text>
</g>
<g transform="translate(994.001,66.25)">
<text transform="matrix(1 0 0 1 599 -66)" class="st5 st6">Zero-Poles plot</text>
</g>
<g>
<line class="st7" x1="834" y1="185" x2="841" y2="178"/>
<line class="st7" x1="834" y1="178" x2="841" y2="185"/>
<line class="st7" x1="948" y1="204" x2="955" y2="197"/>
<line class="st7" x1="948" y1="197" x2="955" y2="204"/>
<line class="st7" x1="1337" y1="12" x2="1344" y2="5"/>
<line class="st7" x1="1337" y1="5" x2="1344" y2="12"/>
<line class="st7" x1="1487" y1="90" x2="1494" y2="83"/>
<line class="st7" x1="1487" y1="83" x2="1494" y2="90"/>
<line class="st7" x1="834" y1="580" x2="841" y2="573"/>
<line class="st7" x1="834" y1="573" x2="841" y2="580"/>
<line class="st7" x1="948" y1="561" x2="955" y2="554"/>
<line class="st7" x1="948" y1="554" x2="955" y2="561"/>
<line class="st7" x1="1337" y1="753" x2="1344" y2="746"/>
<line class="st7" x1="1337" y1="746" x2="1344" y2="753"/>
<line class="st7" x1="1487" y1="675" x2="1494" y2="668"/>
<line class="st7" x1="1487" y1="668" x2="1494" y2="675"/>
<path class="st7" d="M2057.5,378.5l-0.9-2.1l-2.1-0.9l-2.1,0.9l-0.9,2.1l0.9,2.1l2.1,0.9l2.1-0.9L2057.5,378.5z"/>
<path class="st7" d="M2060.5,378.5l-0.8-3l-2.2-2.2l-3-0.8l-3,0.8l-2.2,2.2l-0.8,3l0.8,3l2.2,2.2l3,0.8l3-0.8l2.2-2.2
L2060.5,378.5z"/>
<path class="st7" d="M2063.4,378.5l-0.9-3.9l-2.5-3.1l-3.6-1.7h-4l-3.6,1.7l-2.5,3.1l-0.9,3.9l0.9,3.9l2.5,3.1l3.6,1.7h4l3.6-1.7
l2.5-3.1L2063.4,378.5z"/>
<path class="st7" d="M2066,378.5l-0.9-4.4l-2.5-3.7l-3.7-2.5l-4.4-0.9l-4.4,0.9l-3.7,2.5l-2.5,3.7l-0.9,4.4l0.9,4.4l2.5,3.7
l3.7,2.5l4.4,0.9l4.4-0.9l3.7-2.5l2.5-3.7L2066,378.5z"/>
<line class="st7" x1="948" y1="67" x2="955" y2="60"/>
<line class="st7" x1="948" y1="60" x2="955" y2="67"/>
<line class="st7" x1="1082" y1="97" x2="1089" y2="90"/>
<line class="st7" x1="1082" y1="90" x2="1089" y2="97"/>
<line class="st7" x1="1753" y1="45" x2="1760" y2="38"/>
<line class="st7" x1="1753" y1="38" x2="1760" y2="45"/>
<line class="st7" x1="1886" y1="116" x2="1893" y2="109"/>
<line class="st7" x1="1886" y1="109" x2="1893" y2="116"/>
<line class="st7" x1="948" y1="701" x2="955" y2="694"/>
<line class="st7" x1="948" y1="694" x2="955" y2="701"/>
<line class="st7" x1="1082" y1="671" x2="1089" y2="664"/>
<line class="st7" x1="1082" y1="664" x2="1089" y2="671"/>
<line class="st7" x1="1753" y1="723" x2="1760" y2="716"/>
<line class="st7" x1="1753" y1="716" x2="1760" y2="723"/>
<line class="st7" x1="1886" y1="652" x2="1893" y2="645"/>
<line class="st7" x1="1886" y1="645" x2="1893" y2="652"/>
<path class="st7" d="M2395.5,380.5l-0.9-2.1l-2.1-0.9l-2.1,0.9l-0.9,2.1l0.9,2.1l2.1,0.9l2.1-0.9L2395.5,380.5z"/>
<path class="st7" d="M2398.5,380.5l-0.8-3l-2.2-2.2l-3-0.8l-3,0.8l-2.2,2.2l-0.8,3l0.8,3l2.2,2.2l3,0.8l3-0.8l2.2-2.2
L2398.5,380.5z"/>
<path class="st7" d="M2401.4,380.5l-0.9-3.9l-2.5-3.1l-3.6-1.7h-4l-3.6,1.7l-2.5,3.1l-0.9,3.9l0.9,3.9l2.5,3.1l3.6,1.7h4l3.6-1.7
l2.5-3.1L2401.4,380.5z"/>
<path class="st7" d="M2404,380.5l-0.9-4.4l-2.5-3.7l-3.7-2.5l-4.4-0.9l-4.4,0.9l-3.7,2.5l-2.5,3.7l-0.9,4.4l0.9,4.4l2.5,3.7
l3.7,2.5l4.4,0.9l4.4-0.9l3.7-2.5l2.5-3.7L2404,380.5z"/>
</g>
<g transform="translate(311,266)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(457,121)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(322,272)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">01</text>
<g transform="translate(468,127)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">01</text>
</g>
<g transform="translate(424,284)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(591,151)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(435,290)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">02</text>
<g transform="translate(602,157)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">02</text>
</g>
<g transform="translate(813,92)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(1262,98)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(824,98)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">03</text>
<g transform="translate(1273,104)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">03</text>
</g>
<g transform="translate(963,170)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(1395,169)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(974,176)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">04</text>
<g transform="translate(1406,175)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">04</text>
</g>
<g transform="translate(311,680)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(457,770)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(322,686)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">01</text>
<g transform="translate(468,776)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">01</text>
</g>
<g transform="translate(424,662)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(591,740)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(435,668)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">02</text>
<g transform="translate(602,746)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">02</text>
</g>
<g transform="translate(813,854)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(1262,793)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(824,860)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">03</text>
<g transform="translate(1273,799)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">03</text>
</g>
<g transform="translate(963,776)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
<g transform="translate(1395,722)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st4">ω</text>
</g>
<g transform="translate(974,782)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">04</text>
<g transform="translate(1406,728)">
<text transform="matrix(1 0 0 1 654 -62)" class="st3 st8">04</text>
</g>
<g transform="translate(1430.0436,593.7317)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st3 st4">4 zeros</text>
<g transform="translate(1642.3429,581.2286)">
<text transform="matrix(1 0 0 1 654 -56.5)" class="st3 st4">4 zeros</text>
</g>
<g>
<line class="st9" x1="837.8" y1="181.9" x2="837.8" y2="576.1"/>
<line class="st9" x1="1340.2" y1="8.3" x2="1340.2" y2="749.7"/>
<line class="st10" x1="2054" y1="379" x2="837.8" y2="181.9"/>
<line class="st10" x1="2054" y1="379" x2="1340.2" y2="8.3"/>
<line class="st10" x1="2054" y1="379" x2="837.8" y2="576.1"/>
<line class="st10" x1="2054" y1="379" x2="1340.2" y2="749.7"/>
<line class="st9" x1="1989.3" y1="498" x2="2046.3" y2="394.5"/>
<path class="st9" d="M2039.7,396.2l10.8-9.3l-4.2,7.6L2039.7,396.2"/>
<path class="st9" d="M2050.5,386.9l-2.1,14.1l-2.1-6.5L2050.5,386.9"/>
<line class="st9" x1="951.4" y1="63.9" x2="951.4" y2="697.1"/>
<line class="st9" x1="1086" y1="93.5" x2="1086" y2="667.5"/>
<line class="st9" x1="1756.3" y1="41" x2="1756.3" y2="720"/>
<line class="st9" x1="1890" y1="112.4" x2="1890" y2="648.6"/>
<line class="st10" x1="2392" y1="380.5" x2="951.4" y2="63.9"/>
<line class="st10" x1="2392" y1="380.5" x2="1756.3" y2="41"/>
<line class="st10" x1="2392" y1="380.5" x2="951.4" y2="697.1"/>
<line class="st10" x1="2392" y1="380.5" x2="1756.3" y2="720"/>
<line class="st9" x1="2317.2" y1="492.6" x2="2382.3" y2="395.1"/>
<path class="st9" d="M2375.6,396.2l11.6-8.3l-4.8,7.2L2375.6,396.2"/>
<path class="st9" d="M2387.1,387.9l-3.3,13.9l-1.6-6.7L2387.1,387.9"/>
</g>
<g>
<path d="M2039.7,396.2l10.8-9.3l-4.2,7.6L2039.7,396.2z"/>
<path d="M2050.5,386.9l-2.1,14.1l-2.1-6.5L2050.5,386.9z"/>
<path d="M2375.6,396.2l11.6-8.3l-4.8,7.2L2375.6,396.2z"/>
<path d="M2387.1,387.9l-3.3,13.9l-1.6-6.7L2387.1,387.9z"/>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 8.4 KiB

After

Width:  |  Height:  |  Size: 9.1 KiB

Loading…
Cancel
Save