Browse Source

High pass init, Band elimination minor fix

master
Apostolos Fanakis 6 years ago
parent
commit
c6a29a4dae
  1. 13
      Band Elimination Chebyshev/band_elimination_design.m
  2. BIN
      High Pass Butterworth/Multisim/high_pass_butterworth.ms14
  3. 337
      High Pass Butterworth/high_pass_design.m
  4. 44
      High Pass Butterworth/plot_transfer_function.m

13
Band Elimination Chebyshev/band_elimination_design.m

@ -95,7 +95,7 @@ alpha_parameter = asinh(1/epsilon_parameter)/design_filter_order;
% Calculates the frequency at which half power occurs using the eq. 9-80 % Calculates the frequency at which half power occurs using the eq. 9-80
% TODO: denormalize!! ====================%%%%%%%%%%%%%%%%%%%%%%%%============================ % TODO: denormalize!! ====================%%%%%%%%%%%%%%%%%%%%%%%%============================
design_half_power_radial_frequency = cosh(acosh(( ... design_half_power_radial_frequency = cosh(acosh(( ...
10^(specification_max_pass_attenuation/10-1))^(-1/2))/ ... 10^(specification_max_pass_attenuation/10)-1)^(-1/2))/ ...
design_filter_order); % rad/s design_filter_order); % rad/s
% ----- % -----
@ -639,25 +639,26 @@ ltiview(high_pass_notch_units_transfer_functions(1,1), ...
low_pass_notch_units_transfer_functions(1,2)); low_pass_notch_units_transfer_functions(1,2));
%} %}
% %{
ltiview(high_pass_notch_units_transfer_functions(1,1), ... ltiview(high_pass_notch_units_transfer_functions(1,1), ...
high_pass_notch_units_transfer_functions(1,2), ... high_pass_notch_units_transfer_functions(1,2), ...
low_pass_notch_units_transfer_functions(1,1), ... low_pass_notch_units_transfer_functions(1,1), ...
low_pass_notch_units_transfer_functions(1,2), ... low_pass_notch_units_transfer_functions(1,2), ...
total_transfer_function); total_transfer_function);
% %}
%ltiview(total_transfer_function); %ltiview(total_transfer_function);
%{ %
plot_transfer_function(total_transfer_function, ... plot_transfer_function(total_transfer_function, ...
[specification_central_frequency ... [specification_central_frequency ...
design_half_power_radial_frequency/(2*pi) ... band_elimination_poles_radial_frequencies(1,1)/(2*pi) ...
design_half_power_radial_frequency*specification_low_pass_radial_frequency/(2*pi) ...
specification_low_stop_frequency ... specification_low_stop_frequency ...
specification_low_pass_frequency ... specification_low_pass_frequency ...
specification_high_pass_frequency ... specification_high_pass_frequency ...
specification_high_stop_frequency]); specification_high_stop_frequency]);
%} %
% Clears unneeded variable from workspace % Clears unneeded variable from workspace
clearVars = {'total_transfer_function'}; clearVars = {'total_transfer_function'};

BIN
High Pass Butterworth/Multisim/high_pass_butterworth.ms14

Binary file not shown.

337
High Pass Butterworth/high_pass_design.m

@ -0,0 +1,337 @@
%% AUTHOR : Apostolos Fanakis
%% $DATE : 16-Aug-2018 19:23:40 $
%% $Revision : 1.00 $
%% DEVELOPED : 9.0.0.341360 (R2016a)
%% FILENAME : band_pass_design.m
%% AEM : 8261
%%
%% ========== DESIGN SPECIFICATIONS START ==========
% Figures out design specifications according to my AEM number
AEM = [8 2 6 1];
if AEM(4)<4
design_param_m = 1;
elseif AEM(3)<7
design_param_m = 0;
else
design_param_m = 3;
end
specification_pass_frequency = (4+design_param_m)*1000; % Hz
specification_pass_radial_frequency = ...
specification_pass_frequency*(2*pi); % rad/s
specification_stop_frequency = specification_pass_frequency/2.6; % Hz
specification_stop_radial_frequency = ...
specification_stop_frequency*(2*pi); % rad/s
specification_min_stop_attenuation = 24+AEM(4)*(6/9); % dB
specification_max_pass_attenuation = 0.5+AEM(3)/36; % dB
clear design_param_m
%{
specification_pass_radial_frequency = 15707.96; % rad/s
specification_stop_radial_frequency = 6283.2; % rad/s
specification_min_stop_attenuation = 25; % dB
specification_max_pass_attenuation = 0.5; % dB
%}
% ========== DESIGN SPECIFICATIONS END ==========
%% ========== PROTOTYPE LOW PASS DESIGN SPECIFICATIONS START ==========
% Calculates the specifications for the low pass design that will later be
% converted to the desired high pass filter
% Calculates the specifications using the eq. 12-4
% prototype_normalized_pass_radial_frequency = 1; % rad/s
prototype_normalized_stop_radial_frequency = ...
specification_pass_radial_frequency/ ...
specification_stop_radial_frequency; % rad/s
% Min and max attenuations remain the same
% ========== PROTOTYPE LOW PASS DESIGN SPECIFICATIONS END ==========
%% ========== PROTOTYPE LOW PASS DESIGN START ==========
% Designs the prototype normalized filter.
% Calculates the filter's order using the eq. 9-52
design_filter_order = ceil(log10(((10^ ...
(specification_min_stop_attenuation/10)-1)/(10^ ...
(specification_max_pass_attenuation/10)-1)))/ ...
(2*log10(prototype_normalized_stop_radial_frequency)));
% Calculates the frequency at which half power of the low pass prototype
% occurs using the eq. 9-48
low_pass_prototype_half_power_radial_frequency = 1/ ...
(10^(specification_max_pass_attenuation/10)-1)^ ...
(1/(2*design_filter_order)); % rad/s
% Transforms the result to get the corresponding frequency for the high
% pass using the eq. 12-12
design_half_power_radial_frequency = specification_pass_radial_frequency/ ...
low_pass_prototype_half_power_radial_frequency; % rad/s
% -----
% Calculates stable poles, zeros, angles and other characteristic sizes
% using the Guillemin algorithm for a normalized low pass Butterworth
% filter.
%
% So for the time being we assume that the pass radial frequency is equal
% to unity (1).
% -----
% Initializes necessary variables
low_pass_prototype_number_of_poles = idivide(design_filter_order, ...
int32(2),'ceil');
% Creates five vector arrays of dimensions [1 * number_of_poles] filled
% with zeros to store:
% - the Butterworth angles with reference to the negative horizontal axes,
% - the real parts of the poles,
% - the imaginary parts of the poles,
% - the radial frequencies (Omega0) of the poles and
% - the Q's of the poles
design_butterworth_angles = zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_real_parts = ...
zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_imaginary_parts = ...
zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_radial_frequencies = ...
zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_Q = zeros([1 low_pass_prototype_number_of_poles]);
% Calculates the Butterworth angles using the method suggested in chapter
% 9 (page 10) of the course notes and then uses them to calculate the
% Chebyshev poles
if mod(design_filter_order,2)~=0 % Odd number of poles
% First pole has a zero angle
design_butterworth_angles(1,1)=0;
% The rest of the poles are scattered in the left half pane with
% equal angles
% Theta is a helper parameter
theta=180/design_filter_order;
% Calculates the first pole's real part using the eq. 9-31
low_pass_prototype_poles_real_parts(1,1) = ...
-cosd(design_butterworth_angles(1,1));
% Calculates the first pole's imaginary part using the eq. 9-31
low_pass_prototype_poles_imaginary_parts(1,1) = ...
sind(design_butterworth_angles(1,1));
low_pass_prototype_poles_radial_frequencies(1,1) = 1;
% Calculates the first pole's Q using the eq. 9-38
low_pass_prototype_poles_Q(1,1) = 1/ ...
(2*cosd(design_butterworth_angles(1,1)));
% Calculates the rest of the poles in the same way
for i=2:low_pass_prototype_number_of_poles
design_butterworth_angles(1,i) = double((i-1)*theta);
% Pole's real part, eq. 9-31
low_pass_prototype_poles_real_parts(1,i) = ...
-cosd(design_butterworth_angles(1,i));
% Pole's imaginary part, eq. 9-31
low_pass_prototype_poles_imaginary_parts(1,i) = ...
sind(design_butterworth_angles(1,i));
low_pass_prototype_poles_radial_frequencies(1,i) = 1;
% Pole's Q, eq. 9-38
low_pass_prototype_poles_Q(1,i) = 1/ ...
(2*cosd(design_butterworth_angles(1,i)));
end
else % Even number of poles
% Theta is a helper parameter
theta=90/low_pass_prototype_number_of_poles;
for i=1:low_pass_prototype_number_of_poles
design_butterworth_angles(1,i) = double(90)/ ...
double(design_filter_order)+double((i-1)*theta);
% Pole's real part, eq. 9-31
low_pass_prototype_poles_real_parts(1,i) = ...
-cosd(design_butterworth_angles(1,i));
% Pole's imaginary part, eq. 9-31
low_pass_prototype_poles_imaginary_parts(1,i) = ...
sind(design_butterworth_angles(1,i));
low_pass_prototype_poles_radial_frequencies(1,i) = 1;
% Pole's Q, eq. 9-106
low_pass_prototype_poles_Q(1,i) = 1/ ...
(2*cosd(design_butterworth_angles(1,i)));
end
end
% Clears unneeded variables from workspace
%
clearVars = {'i', 'prototype_normalized_stop_radial_frequency', ...
'low_pass_prototype_half_power_radial_frequency', 'theta'};
clear(clearVars{:})
clear clearVars
%
% ========== PROTOTYPE LOW PASS DESIGN END ==========
%% ========== POLES TRANSFORMATION START ==========
% Transforms the prototype's poles
% Initializes necessary variables
% Calculates the number of poles that will occur after the transformation
high_pass_number_of_poles = low_pass_prototype_number_of_poles;
% According to the course notes (chapter 12, end of page 5) the
% transformation leaves the poles unchanged.
high_pass_poles_real_parts = low_pass_prototype_poles_real_parts;
high_pass_poles_imaginary_parts = ...
low_pass_prototype_poles_imaginary_parts;
high_pass_poles_radial_frequencies = ...
low_pass_prototype_poles_radial_frequencies;
high_pass_poles_Q = low_pass_prototype_poles_Q;
% The transormation also produces a number of zeros at (0,0) equal to the
% filter order
high_pass_transfer_function_zeros = zeros([1 design_filter_order]);
% Clears unneeded variables from workspace
clear low_pass_prototype_number_of_poles
clear -regexp ^low_pass_prototype_
% ========== POLES TRANSFORMATION END ==========
%% ========== POLES DE-NORMALIZATION START ==========
% The high pass filter poles calculated above are those of a normalized
% filter. De-normalization is needed to get the actual poles for the
% desired high pass filter.
for i=1:high_pass_number_of_poles
high_pass_poles_real_parts(1,i) = high_pass_poles_real_parts(1,i)* ...
design_half_power_radial_frequency;
high_pass_poles_imaginary_parts(1,i) = ...
high_pass_poles_imaginary_parts(1,i)* ...
design_half_power_radial_frequency;
high_pass_poles_radial_frequencies(1,i) = ...
design_half_power_radial_frequency;
end
% Clears unneeded variables from workspace
clear i
clear -regexp ^geffe_
clear -regexp ^transformation_
% ========== POLES DE-NORMALIZATION END ==========
%% ========== UNITS IMPLEMENTATION START ==========
% AEM(2) = 2, so the first design strategy is going to be used in the
% Sallen-Key high pass circuits.
% -------------------------------------------------------------------------
% Unit 1 has a pole pair with Q equal to 0.5412 and lies on a circle with a
% radius equal to 25097.78.
% -------------------------------------------------------------------------
% Unit 1 has a pole pair with Q equal to 1.3066 and lies on a circle with a
% radius equal to 25097.78.
% -------------------------------------------------------------------------
% Initializes necessary arrays, each array is 1X2, the first element (1,1)
% corresponds to the first unit and the second element (1,2) to second
% unit.
units_R = ones([1 high_pass_number_of_poles]);
units_C = ones([1 high_pass_number_of_poles]);
units_r1 = ones([1 high_pass_number_of_poles]);
units_r2 = zeros([1 high_pass_number_of_poles]);
units_k = zeros([1 high_pass_number_of_poles]);
units_frequency_scale_factors = zeros([1 2]);
units_amplitude_scale_factors = zeros([1 2]);
units_transfer_functions = [tf(1) tf(1)];
for i=1:high_pass_number_of_poles
% Calculates k and r2 using the eq. 6-75
units_r2(1,i) = 2-1/high_pass_poles_Q(1,i);
units_k(1,i) = 3-1/high_pass_poles_Q(1,i);
% Selects the appropriate frequency scale factor to transfer the
% normalized radial frequency back to the original
units_frequency_scale_factors(1,i) = ...
high_pass_poles_radial_frequencies(1,i);
% AEM(3) = 6, so the magnitude scaling will be performed to achieve a
% capacitor value of 0.1uF using the eq. 6-33
units_amplitude_scale_factors(1,i) = ...
units_C(1,i)/ ...
(units_frequency_scale_factors(1,i)*0.1*10^(-6));
% Performs scaling
units_R(1,i) = units_R(1,i)* ...
units_amplitude_scale_factors(1,i);
units_C(1,i) = 0.1*10^(-6);
units_r1(1,i) = units_r1(1,i)* ...
units_amplitude_scale_factors(1,i);
units_r2(1,i) = units_r2(1,i)* ...
units_amplitude_scale_factors(1,i);
% Builds unit's transfer function
% Builds numerator and denominator of the transfer function using the
% eq. 6-68
G = (units_R(1,i)+units_r2(1,i))/units_R(1,i);
unit_numerator = [G ...
0 ...
0];
unit_denominator = [1 ...
2/(units_C(1,i)*units_R(1,i))+(1-G)/(units_C(1,i)*units_R(1,i)) ...
1/(units_C(1,i)^2*units_R(1,i)^2)];
units_transfer_functions(1,i) = ...
tf(unit_numerator, unit_denominator);
end
% Clears unneeded variables from workspace
clearVars = {''};
clear(clearVars{:})
clear clearVars
clear -regexp _transfer_function$
% ========== UNITS IMPLEMENTATION END ==========
%% ========== GAIN ADJUSTMENT START ==========
%
total_gain_high = units_k(1,1)*units_k(1,2);
unit_adjustment_gain = 1/total_gain_high;
% We arbitrarily choose to use a 10KOhm series resistor in the adjustment
% unit
unit_adjustment_feedback_resistor = 10*10^3*unit_adjustment_gain;
%
total_transfer_function = series(units_transfer_functions(1,1), ...
units_transfer_functions(1,2));
total_transfer_function = total_transfer_function*unit_adjustment_gain;
%{
ltiview(units_transfer_functions(1,1), ...
units_transfer_functions(1,2));
%}
%{
ltiview(units_transfer_functions(1,1), ...
units_transfer_functions(1,2), ...
total_transfer_function);
%}
%ltiview(total_transfer_function);
%
plot_transfer_function(total_transfer_function, ...
[design_half_power_radial_frequency/(2*pi) ...
specification_stop_frequency ...
specification_pass_frequency ...
15000]);
%
% Clears unneeded variable from workspace
clearVars = {'total_transfer_function'};
clear(clearVars{:})
clear clearVars
clear -regexp _transfer_functions$
% ========== GAIN ADJUSTMENT END ==========

44
High Pass Butterworth/plot_transfer_function.m

@ -0,0 +1,44 @@
function plot_transfer_function( tf, frequency_markers )
%PLOT_TRANSFER_FUNCTION Plots bode of a transfer function with markers
%
% tf - The transfer function (created using tf)
% frequency_markers - A matrix of frequencies in Hz
%
% Example:
% plot_transfer_function( tf([1000], [1 1000]), [10 1000 10000] );
figure;
x_space = logspace(1,5,1000); % 1000 points between 10^1 and 10^5
x_space = 2 * pi * x_space; % to rad / sec
[mag,~,wout] = bode(tf,x_space);
mag = squeeze(mag);
wout = squeeze(wout);
mag = 20*log10(mag);
wout = wout/2/pi;
semilogx(wout,mag,'-b');
axis([min(wout) max(wout) min(mag)-10 max(mag)+10]);
[num,den] = tfdata(tf);
syms s;
d1 = digits(5);
ltx = latex(vpa(poly2sym(cell2mat(num),s)/poly2sym(cell2mat(den),s)));
digits(d1);
title(strcat('$',ltx,'$'), 'Interpreter','latex', 'FontSize', 24);
xlabel('Frequency (Hz)', 'FontSize', 18);
ylabel('Magnitude (dB)', 'FontSize', 18);
grid on;
hold on;
[dbMarks,~,frequency_markers] = bode(tf,2 * pi * frequency_markers);
dbMarks = squeeze(dbMarks);
frequency_markers = squeeze(frequency_markers);
dbMarks = 20*log10(dbMarks);
frequency_markers = frequency_markers/2/pi;
Aw = cell(size(frequency_markers, 1) + 1, 1);
Aw{1} = 'Transfer function';
for i = 1 : size(frequency_markers, 1)
semilogx(frequency_markers(i),dbMarks(i),'o');
Aw{i+1} = sprintf('Attenuation at %.2f Hz is %.2f dB', ...
frequency_markers(i), dbMarks(i));
end
legend(Aw,'Location','best','FontSize',12);
set(gca,'FontSize',14);
end
Loading…
Cancel
Save