Browse Source

Band elimination filter init retry

master
Apostolos Fanakis 6 years ago
parent
commit
db79e41b30
  1. 369
      Band Elimination Chebyshev/band_elimination_design.m

369
Band Elimination Chebyshev/band_elimination_design.m

@ -0,0 +1,369 @@
%% AUTHOR : Apostolos Fanakis
%% $DATE : 14-Aug-2018 15:32:12 $
%% $Revision : 1.00 $
%% DEVELOPED : 9.0.0.341360 (R2016a)
%% FILENAME : band_pass_design.m
%% AEM : 8261
%%
%% ========== DESIGN SPECIFICATIONS START ==========
% Figures out design specifications according to my AEM number
AEM = [8 2 6 1];
% Specification f0
specification_central_frequency = 2.5*1000; % Hz
specification_central_radial_frequency = 2*pi* ...
specification_central_frequency; % rad/s
% Specification f1
specification_low_pass_frequency = 1650+50*AEM(3); % Hz
specification_low_pass_radial_frequency = 2*pi* ...
specification_low_pass_frequency; % rad/s
% Specification f2
specification_high_pass_frequency = specification_central_frequency^2/ ...
specification_low_pass_frequency; % Hz
specification_high_pass_radial_frequency = 2*pi* ...
specification_high_pass_frequency; % rad/s
% Specification D
design_param_D = (specification_central_frequency^2- ...
specification_low_pass_frequency^2)/ ...
(specification_low_pass_frequency*2.5);
% Specification f3
specification_low_stop_frequency = (-design_param_D+ ...
sqrt(design_param_D^2+4*specification_central_frequency^2))/2; % Hz
specification_low_stop_radial_frequency = 2*pi* ...
specification_low_stop_frequency; % rad/s
% Specification f4
specification_high_stop_frequency = specification_central_frequency^2/ ...
specification_low_stop_frequency; % Hz
specification_high_stop_radial_frequency = 2*pi* ...
specification_high_stop_frequency; % rad/s
specification_min_stop_attenuation = 26+AEM(3)*5/9; % dB
specification_max_pass_attenuation = 0.5+AEM(4)/18; % dB
clear design_param_D
%{
specification_low_pass_radial_frequency = 1000; % rad/s
specification_high_pass_radial_frequency = 3000; % rad/s
specification_low_stop_radial_frequency = 1400; % rad/s
specification_high_stop_radial_frequency = 2142; % rad/s
specification_min_stop_attenuation = 15; % dB
specification_max_pass_attenuation = 1; % dB
specification_central_radial_frequency = sqrt( ...
specification_low_pass_radial_frequency* ...
specification_high_pass_radial_frequency);
%}
% ========== DESIGN SPECIFICATIONS END ==========
%% ========== PROTOTYPE LOW PASS DESIGN SPECIFICATIONS START ==========
% Calculates the specifications for the low pass design that will later be
% converted to a high pass filter
% Calculates the specifications using the eq. 13-9
% prototype_normalized_pass_radial_frequency = 1; % rad/s
prototype_normalized_stop_radial_frequency = ...
(specification_high_pass_radial_frequency- ...
specification_low_pass_radial_frequency)/ ...
(specification_high_stop_radial_frequency- ...
specification_low_stop_radial_frequency); % rad/s
% Min and max attenuations remain the same
% Calculates the geometric middle radial frequency using the eq. 13-2
design_geometric_central_radial_frequency = ...
sqrt(specification_low_pass_radial_frequency* ...
specification_high_pass_radial_frequency); % rad/s
% Calculates the pass bandwidth using the eq. 13-1
design_filter_bandwidth = specification_high_pass_radial_frequency- ...
specification_low_pass_radial_frequency; % rad/s
% ========== PROTOTYPE LOW PASS DESIGN SPECIFICATIONS END ==========
%% ========== PROTOTYPE LOW PASS DESIGN START ==========
% The calculated low pass design specifications have a form fit for a low
% pass Chebyshev filter design (the pass radial frequency is normalized to
% one).
% Designs the prototype normalized filter.
% Calculates the filter's order using the eq. 9-83
design_filter_order = ceil(acosh(((10^ ...
(specification_min_stop_attenuation/10)-1)/(10^ ...
(specification_max_pass_attenuation/10)-1))^(1/2))/ ...
acosh(prototype_normalized_stop_radial_frequency));
% Calculates epsilon parameter using the eq. 9-76
epsilon_parameter = sqrt(10^(specification_max_pass_attenuation/10)-1);
% Calculates alpha parameter using the eq. 9-92
alpha_parameter = asinh(1/epsilon_parameter)/design_filter_order;
% Calculates the frequency at which half power occurs using the eq. 9-80
% TODO: denormalize!! ====================%%%%%%%%%%%%%%%%%%%%%%%%============================
design_half_power_radial_frequency = cosh(acosh(( ...
10^(specification_max_pass_attenuation/10-1))^(-1/2))/ ...
design_filter_order); % rad/s
% -----
% Calculates stable poles, zeros, angles and other characteristic sizes
% using the Guillemin algorithm
% -----
% Initializes necessary variables
low_pass_prototype_number_of_poles = idivide(design_filter_order, ...
int32(2),'ceil');
% Creates five vector arrays of dimensions [1 * number_of_poles] filled
% with zeros to store:
% - the Butterworth angles with reference to the negative horizontal axes,
% - the real parts of the poles,
% - the imaginary parts of the poles,
% - the radial frequencies (Omega0) of the poles and
% - the Q's of the poles
design_butterworth_angles = zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_real_parts = ...
zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_imaginary_parts = ...
zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_radial_frequencies = ...
zeros([1 low_pass_prototype_number_of_poles]);
low_pass_prototype_poles_Q = zeros([1 low_pass_prototype_number_of_poles]);
% Calculates the Butterworth angles using the method suggested in chapter
% 9 (page 10) of the course notes and then uses them to calculate the
% Chebyshev poles
if mod(design_filter_order,2)~=0 % Odd number of poles
% First pole has a zero angle
design_butterworth_angles(1,1)=0;
% The rest of the poles are scattered in the left half pane with
% equal angles
% Theta is a helper parameter
theta=180/design_filter_order;
% Calculates the first pole's real part using the eq. 9-102
low_pass_prototype_poles_real_parts(1,1) = -sinh(alpha_parameter)* ...
cosd(design_butterworth_angles(1,1));
% Calculates the first pole's imaginary part using the eq. 9-103
low_pass_prototype_poles_imaginary_parts(1,1) = cosh(alpha_parameter)* ...
sind(design_butterworth_angles(1,1));
% Calculates the first pole's radial frequency using the eq. 9-106
low_pass_prototype_poles_radial_frequencies(1,1) = sqrt( ...
low_pass_prototype_poles_real_parts(1,1)^2+ ...
low_pass_prototype_poles_imaginary_parts(1,1)^2);
% Calculates the first pole's Q using the same equations (9-106)
low_pass_prototype_poles_Q(1,1) = ...
low_pass_prototype_poles_radial_frequencies(1,1)/ ...
(2*low_pass_prototype_poles_real_parts(1,1));
% Calculates the rest of the poles in the same way
for i=2:low_pass_prototype_number_of_poles
design_butterworth_angles(1,i)=double((i-1)*theta);
% Pole's real part, eq. 9-102
low_pass_prototype_poles_real_parts(1,i) = ...
-sinh(alpha_parameter)*cosd(design_butterworth_angles(1,i));
% Pole's imaginary part, eq. 9-103
low_pass_prototype_poles_imaginary_parts(1,i) = ...
cosh(alpha_parameter)*sind(design_butterworth_angles(1,i));
% Pole's radial frequency, eq. 9-106
low_pass_prototype_poles_radial_frequencies(1,i) = sqrt( ...
low_pass_prototype_poles_real_parts(1,i)^2+ ...
low_pass_prototype_poles_imaginary_parts(1,i)^2);
% Pole's Q, eq. 9-106
low_pass_prototype_poles_Q(1,i) = ...
low_pass_prototype_poles_radial_frequencies(1,i)/ ...
(2*abs(low_pass_prototype_poles_real_parts(1,i)));
end
else % Even number of poles
% Theta is a helper parameter
theta=90/low_pass_prototype_number_of_poles;
for i=1:low_pass_prototype_number_of_poles
design_butterworth_angles(1,i)=double(90)/ ...
double(design_filter_order)+double((i-1)*theta);
% Pole's real part, eq. 9-102
low_pass_prototype_poles_real_parts(1,i) = ...
-sinh(alpha_parameter)*cosd(design_butterworth_angles(1,i));
% Pole's imaginary part, eq. 9-103
low_pass_prototype_poles_imaginary_parts(1,i) = ...
cosh(alpha_parameter)*sind(design_butterworth_angles(1,i));
% Pole's radial frequency, eq. 9-106
low_pass_prototype_poles_radial_frequencies(1,i) = sqrt( ...
low_pass_prototype_poles_real_parts(1,i)^2+ ...
low_pass_prototype_poles_imaginary_parts(1,i)^2);
% Pole's Q, eq. 9-106
low_pass_prototype_poles_Q(1,i) = ...
low_pass_prototype_poles_radial_frequencies(1,i)/ ...
(2*abs(low_pass_prototype_poles_real_parts(1,i)));
end
end
% Clears unneeded variables from workspace
clearVars = {'prototype_normalized_stop_radial_frequency', ...
'epsilon_parameter', 'alpha_parameter', 'theta'};
clear(clearVars{:})
clear clearVars
% ========== PROTOTYPE LOW PASS DESIGN END ==========
%% ========== LOW PASS TO HIGH PASS TRANSFORMATION START ==========
% Inverses the poles of the low pass prototype to transform it to a high
% pass filter that will later be converted to the desired band
% elimination filter
% Initializes necessary variables
high_pass_prototype_number_of_poles = low_pass_prototype_number_of_poles;
% Creates five vector arrays of dimensions [1 * number_of_poles] filled
% with zeros to store:
% - the radial frequencies (Omega0) of the poles and
% - the Q's of the poles
% - the angles of the poles
% - the real parts of the poles,
% - the imaginary parts of the poles,
high_pass_prototype_poles_radial_frequencies = ...
zeros([1 high_pass_prototype_number_of_poles]);
high_pass_prototype_poles_Q = ...
zeros([1 high_pass_prototype_number_of_poles]);
high_pass_prototype_poles_angles = ...
zeros([1 high_pass_prototype_number_of_poles]);
high_pass_prototype_poles_real_parts = ...
zeros([1 high_pass_prototype_number_of_poles]);
high_pass_prototype_poles_imaginary_parts = ...
zeros([1 high_pass_prototype_number_of_poles]);
for i=1:high_pass_prototype_number_of_poles
% Calculates the inversed pole's radial frequencies using the eq. 13-14
high_pass_prototype_poles_radial_frequencies(1,i) = 1/ ...
low_pass_prototype_poles_radial_frequencies(1,i);
% The Q of the poles remain the same
high_pass_prototype_poles_Q(1,i) = low_pass_prototype_poles_Q(1,i);
% Calculates the inversed pole's angle using the eq. 9-113
high_pass_prototype_poles_angles(1,i) = acosd(1/ ...
(2*high_pass_prototype_poles_Q(1,i)));
% Calculates the real and imaginary parts of the inverted poles
high_pass_prototype_poles_real_parts(1,i) = ...
-high_pass_prototype_poles_radial_frequencies(1,i)* ...
cosd(high_pass_prototype_poles_angles(1,i));
high_pass_prototype_poles_imaginary_parts(1,i) = ...
high_pass_prototype_poles_radial_frequencies(1,i)* ...
sind(high_pass_prototype_poles_angles(1,i));
end
% Clears unneeded variables from workspace
%
clearVars = {'i', 'high_pass_prototype_poles_radial_frequencies', ...
'high_pass_prototype_poles_Q', 'high_pass_prototype_poles_angles'};
clear(clearVars{:})
clear clearVars
%
clear -regexp ^low_pass_prototype_
% ========== LOW PASS TO HIGH PASS TRANSFORMATION END ==========
%% ========== POLES TRANSFORMATION START ==========
% Transforms the prototype's poles according to the Geffe algorithm
% Initializes necessary variables
% Calculates the parameter qc, required for the transformation of the
% poles, using the eq. 11-6
transformation_qc_parameter = design_geometric_central_radial_frequency/ ...
design_filter_bandwidth;
% Calculates the number of poles that will occur after the transformation
if mod(design_filter_order,2)~=0
band_elimination_number_of_poles = 2*high_pass_prototype_number_of_poles-1;
else
band_elimination_number_of_poles = 2*high_pass_prototype_number_of_poles;
end
% Creates four vector arrays of dimensions [1 * 4] filled with zeros to
% store:
% - the Q's of the transformed poles
% - the angles of the transformed poles
% - the radial frequencies of the transformed poles
% - the transfer function zeros
band_elimination_poles_Q = zeros([1 band_elimination_number_of_poles]);
band_elimination_poles_angle = zeros([1 band_elimination_number_of_poles]);
band_elimination_poles_radial_frequencies = zeros( ...
[1 band_elimination_number_of_poles]);
% Every pole transformation produces one transfer function zero at (0,0) for
% every new pole
band_elimination_transfer_function_zeros = zeros( ...
[1 2*design_filter_order]);
% temp_index is a helper variable
temp_index = 1;
% The transformation from high pass to band elimination produces pairs of
% imaginary zeros. The number of the pairs is equal to the filter order.
for i=1:2:(2*design_filter_order)
band_elimination_transfer_function_zeros(1,i) = 1i* ...
design_geometric_central_radial_frequency;
band_elimination_transfer_function_zeros(1,i+1) = -1i* ...
design_geometric_central_radial_frequency;
end
for i=1:high_pass_prototype_number_of_poles
if high_pass_prototype_poles_imaginary_parts(1,i)==0 % Real pole
transformation_sigma_1 = -high_pass_prototype_poles_real_parts(1,i);
% Calculates the transformed pole's Q using the eq. 11-11
band_elimination_poles_Q(1,temp_index) = ...
transformation_qc_parameter/transformation_sigma_1;
% Calculates the transformed pole's angle using the eq. 11-12
band_elimination_poles_angle(1,temp_index) = acosd(1/ ...
(2*band_elimination_poles_Q(1,i)));
band_elimination_poles_radial_frequencies(1,temp_index) = ...
design_geometric_central_radial_frequency;
temp_index = temp_index+1;
else % Complex pole
geffe_sigma_2 = -high_pass_prototype_poles_real_parts(1,i);
geffe_Omega_2 = high_pass_prototype_poles_imaginary_parts(1,i);
% Calculates the parameter C using the eq. 11-28
geffe_C = geffe_sigma_2^2+geffe_Omega_2^2;
% Calculates the parameter D using the eq. 11-29
geffe_D = (2*geffe_sigma_2)/transformation_qc_parameter;
% Calculates the parameter E using the eq. 11-30
geffe_E = 4+geffe_C/transformation_qc_parameter^2;
% Calculates the parameter G using the eq. 11-31
geffe_G = sqrt(geffe_E^2-4*geffe_D^2);
% Calculates the parameter Q using the eq. 11-32
geffe_Q = sqrt((geffe_E+geffe_G)/2)/geffe_D;
% Calculates the parameter k using the eq. 11-33
geffe_k = (geffe_sigma_2*geffe_Q)/transformation_qc_parameter;
% Calculates the parameter W using the eq. 11-34
geffe_W = geffe_k+sqrt(geffe_k^2-1);
% Calculates the radius of the circles upon which the two poles
% reside using the eq. 11-15
geffe_Omega_0_1 = design_geometric_central_radial_frequency* ...
geffe_W;
geffe_Omega_0_2 = design_geometric_central_radial_frequency/ ...
geffe_W;
% The two poles have the same Q
band_elimination_poles_Q(1,temp_index) = geffe_Q;
band_elimination_poles_Q(1,temp_index+1) = geffe_Q;
% Calculates the transformed pole's angle using the eq. 11-37b
band_elimination_poles_angle(1,temp_index) = acosd(1/ ...
(2*band_elimination_poles_Q(1,temp_index)));
band_elimination_poles_angle(1,temp_index+1) = ...
band_elimination_poles_angle(1,temp_index);
band_elimination_poles_radial_frequencies(1,temp_index) = ...
geffe_Omega_0_1;
band_elimination_poles_radial_frequencies(1,temp_index+1) = ...
geffe_Omega_0_2;
temp_index = temp_index+2;
end
end
% Clears unneeded variables from workspace
clearVars = {'i', 'temp_index'};
clear(clearVars{:})
clear clearVars
clear -regexp ^high_pass_prototype_
clear -regexp ^geffe_
clear -regexp ^transformation_
% ========== POLES TRANSFORMATION END ==========
Loading…
Cancel
Save