Semester assignment for the course "Multimedia systems and virtual reality" of THMMY in AUTH university.
 
 

61 lines
1.2 KiB

function y = imdct4(x)
% IMDCT4 Calculates the Modified Discrete Cosine Transform
% y = imdct4(x)
%
% x: input signal (can be either a column or frame per column)
% y: IMDCT of x
%
% Vectorize ! ! !
% ------- imdct4.m -----------------------------------------
% Marios Athineos, marios@ee.columbia.edu
% http://www.ee.columbia.edu/~marios/
% Copyright (c) 2002 by Columbia University.
% All rights reserved.
% ----------------------------------------------------------
[flen,fnum] = size(x);
% Make column if it's a single row
if (flen==1)
x = x(:);
flen = fnum;
fnum = 1;
end
% We need these for furmulas below
N = flen;
M = N/2;
twoN = 2*N;
sqrtN = sqrt(twoN);
% We need this twice so keep it around
t = (0:(M-1)).';
w = diag(sparse(exp(-j*2*pi*(t+1/8)/twoN)));
% Pre-twiddle
t = (0:(M-1)).';
c = x(2*t+1,:) + j*x(N-1-2*t+1,:);
c = (0.5*w)*c;
% FFT for N/2 points only !!!
c = fft(c,M);
% Post-twiddle
c = ((8/sqrtN)*w)*c;
% Preallocate rotation matrix
rot = zeros(twoN,fnum);
% Sort
t = (0:(M-1)).';
rot(2*t+1,:) = real(c(t+1,:));
rot(N+2*t+1,:) = imag(c(t+1,:));
t = (1:2:(twoN-1)).';
rot(t+1,:) = -rot(twoN-1-t+1,:);
% Shift
t = (0:(3*M-1)).';
y(t+1,:) = rot(t+M+1,:);
t = (3*M:(twoN-1)).';
y(t+1,:) = -rot(t-3*M+1,:);