Exercise 3 for the course "Parallel and distributed systems" of THMMY in AUTH university.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

148 lines
6.2 KiB

#include "meanshift_kernels.h"
#include <stdio.h>
#include <stdlib.h>
__global__ void calculate_kernel_matrix_kernel(Matrix shifted_points, Matrix original_points,
double deviation, Matrix kernel_matrix){
// each thread calculates one element of kernel_matrix
int row = blockIdx.x * blockDim.x + threadIdx.x;
int col = blockIdx.y * blockDim.y + threadIdx.y;
// performs calculations only if thread's indexes are within matrix bounds
if (row * kernel_matrix.width + col >= kernel_matrix.width * kernel_matrix.height){
return;
}
int dimensions = shifted_points.width;
// calculate distance
double sum = 0, dif;
for (int i=0; i<dimensions; i++){
dif = shifted_points.elements[row * dimensions + i]
- original_points.elements[col * dimensions + i];
sum += dif * dif;
}
double distance = sqrt(sum);
double deviation_square = deviation*deviation;
if (distance < deviation_square){
// computes kernel matrix
double pow = ((-1)*(distance * distance))/(2*(deviation_square));
kernel_matrix.elements[row * kernel_matrix.width + col] = exp(pow);
} else {
kernel_matrix.elements[row * kernel_matrix.width + col] = 0;
}
if (row == col){
kernel_matrix.elements[row * kernel_matrix.width + col] += 1;
}
}
__global__ void denominator_kernel(Matrix denominator, Matrix kernel_matrix){
// each thread computes one element of denominator_kernel
// by accumulating results into cell_value
double cell_value = 0;
int row = blockIdx.x * blockDim.x + threadIdx.x;
// performs calculations only if thread's indexes are within matrix bounds
if (row >= denominator.height){
return;
}
for (int column = 0; column < kernel_matrix.width; ++column){
cell_value += kernel_matrix.elements[row * kernel_matrix.width + column];
}
denominator.elements[row] = cell_value;
}
__global__ void shift_points_kernel(Matrix original_points, Matrix kernel_matrix,
Matrix shifted_points, Matrix new_shift, Matrix denominator, Matrix mean_shift_vector){
int BLOCK_SIZE = blockDim.y;
int block_row = blockIdx.x;
int block_col = blockIdx.y;
// each thread computes one element of new_shift by accumulating results into cell_value
double cell_value = 0;
// Thread row and column within sub_new_shift
int row = threadIdx.x;
int col = threadIdx.y;
// performs calculations only if thread's indexes are within matrix bounds
if ((BLOCK_SIZE * block_row + row) >= new_shift.height ||
(BLOCK_SIZE * block_col + col) >= new_shift.width){
return;
}
// each thread block computes one sub-matrix sub_new_shift of C
Matrix sub_new_shift = get_sub_matrix(new_shift, block_row, block_col, BLOCK_SIZE);
// dynamically allocated shared memory used to store sub_kernel_matrix and sub_original_points
// respectively
extern __shared__ double joined_shared_memory[];
// first part of the allocated memory is used for s_sub_kernel_matrix and second part is used
// for s_sub_original_points
double *s_sub_kernel_matrix = &(joined_shared_memory[0]);
double *s_sub_original_points = &(joined_shared_memory[BLOCK_SIZE * BLOCK_SIZE]);
// cancel execution if allocation failed
if (sizeof(s_sub_kernel_matrix) != BLOCK_SIZE * BLOCK_SIZE * 2){
__threadfence();
asm("trap;");
}
// loops over all the sub-matrices of kernel_matrix and original_points that are required to
// compute sub_new_shift, multiplies each pair of sub-matrices and accumulates the results
for (int sub_matrix_index = 0;
sub_matrix_index < ((kernel_matrix.width + BLOCK_SIZE - 1) / BLOCK_SIZE);
++sub_matrix_index) {
// gets sub-matrix sub_kernel_matrix of kernel_matrix
Matrix sub_kernel_matrix = get_sub_matrix(kernel_matrix, block_row, sub_matrix_index, BLOCK_SIZE);
// gets sub-matrix sub_original_points of original_points
Matrix sub_original_points = get_sub_matrix(original_points, sub_matrix_index, block_col, BLOCK_SIZE);
// loads s_sub_kernel_matrix and s_sub_original_points from device global memory to shared
//memory, each thread loads one element of each sub-matrix
s_sub_kernel_matrix[row * BLOCK_SIZE + col] =
sub_kernel_matrix.elements[row * sub_kernel_matrix.stride + col];
s_sub_original_points[row * BLOCK_SIZE + col] =
sub_original_points.elements[row * sub_original_points.stride + col];
// synchronizes to make sure the sub-matrices are loaded before starting the computation
__syncthreads();
int curr_col_begin = sub_matrix_index * BLOCK_SIZE;
// multiplies sub_kernel_matrix and sub_original_points
for (int element_index = 0; element_index < BLOCK_SIZE; ++element_index){
if (curr_col_begin + element_index < kernel_matrix.width){
cell_value += s_sub_kernel_matrix[row * BLOCK_SIZE + element_index] *
s_sub_original_points[element_index * BLOCK_SIZE + col];
}
}
// synchronizes to make sure that the preceding computation is done before loading two new
// sub-matrices of kernel_matrix and original_points in the next iteration
__syncthreads();
}
// new_shift elements are calculated by dividing with the denominator
sub_new_shift.elements[row * sub_new_shift.stride + col] =
cell_value / denominator.elements[block_row * BLOCK_SIZE + row];
int cell_row = block_row * BLOCK_SIZE + row;
int cell_col = block_col * BLOCK_SIZE + col;
mean_shift_vector.elements[cell_row * mean_shift_vector.stride + cell_col] =
sub_new_shift.elements[row * sub_new_shift.stride + col] -
shifted_points.elements[cell_row * shifted_points.stride + cell_col];
}
// gets the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is located col sub-matrices to the right
// and row sub-matrices down from the upper-left corner of A
__device__ Matrix get_sub_matrix(Matrix A, int row, int col, int BLOCK_SIZE){
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &(A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col]);
return Asub;
}