|
|
|
#include "meanshift_kernels.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
__global__ void calculate_kernel_matrix_kernel(Matrix shifted_points, Matrix original_points,
|
|
|
|
double deviation, Matrix kernel_matrix){
|
|
|
|
// each thread calculates one element of kernel_matrix
|
|
|
|
int row = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int col = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
|
|
|
|
// performs calculations only if thread's indexes are within matrix bounds
|
|
|
|
if (row * kernel_matrix.width + col >= kernel_matrix.width * kernel_matrix.height){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int dimensions = shifted_points.width;
|
|
|
|
// calculate distance
|
|
|
|
double sum = 0, dif;
|
|
|
|
for (int i=0; i<dimensions; i++){
|
|
|
|
dif = shifted_points.elements[row * dimensions + i] - original_points.elements[col * dimensions + i];
|
|
|
|
sum += dif * dif;
|
|
|
|
}
|
|
|
|
double distance = sqrt(sum);
|
|
|
|
|
|
|
|
double deviation_square = deviation*deviation;
|
|
|
|
if (distance < deviation_square){
|
|
|
|
// computes kernel matrix
|
|
|
|
double pow = ((-1)*(distance * distance))/(2*(deviation_square));
|
|
|
|
kernel_matrix.elements[row * kernel_matrix.width + col] = exp(pow);
|
|
|
|
} else {
|
|
|
|
kernel_matrix.elements[row * kernel_matrix.width + col] = 0;
|
|
|
|
}
|
|
|
|
if (row == col){
|
|
|
|
kernel_matrix.elements[row * kernel_matrix.width + col] += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ void shift_points_kernel(Matrix original_points, Matrix kernel_matrix, Matrix shifted_points,
|
|
|
|
Matrix new_shift, Matrix denominator, Matrix mean_shift_vector){
|
|
|
|
// each thread computes one element of new_shift
|
|
|
|
// by accumulating results into cell_value
|
|
|
|
double cell_value = 0;
|
|
|
|
int row = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int col = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
|
|
|
|
// performs calculations only if thread's indexes are within matrix bounds
|
|
|
|
if (row * new_shift.width + col >= new_shift.width * new_shift.height){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// calculates new_shift
|
|
|
|
// builds nominator by multiplying kernel_matrix and original_points
|
|
|
|
for (int element_index = 0; element_index < kernel_matrix.width; ++element_index){
|
|
|
|
cell_value += kernel_matrix.elements[row * kernel_matrix.width + element_index]
|
|
|
|
* original_points.elements[element_index * original_points.width + col];
|
|
|
|
}
|
|
|
|
// new_shift elements are calculated by dividing with the denominator
|
|
|
|
new_shift.elements[row * new_shift.width + col] =
|
|
|
|
cell_value / denominator.elements[row];
|
|
|
|
|
|
|
|
// calculates mean-shift vector
|
|
|
|
mean_shift_vector.elements[row * new_shift.width + col] =
|
|
|
|
new_shift.elements[row * new_shift.width + col] -
|
|
|
|
shifted_points.elements[row * new_shift.width + col];
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ void denominator_kernel(Matrix denominator, Matrix kernel_matrix){
|
|
|
|
// each thread computes one element of denominator_kernel
|
|
|
|
// by accumulating results into cell_value
|
|
|
|
double cell_value = 0;
|
|
|
|
int row = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
// performs calculations only if thread's indexes are within matrix bounds
|
|
|
|
if (row >= denominator.height){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int column = 0; column < kernel_matrix.width; ++column){
|
|
|
|
cell_value += kernel_matrix.elements[row * kernel_matrix.width + column];
|
|
|
|
}
|
|
|
|
denominator.elements[row] = cell_value;
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ double calcNorm(Matrix mean_shift_vector){
|
|
|
|
float sum =0;
|
|
|
|
for (int k=0; k< patchSize; k++){
|
|
|
|
for (int l=0; l<patchSize; l++){
|
|
|
|
sum+=(fNi(k,l)-fNj(k,l))*(fNi(k,l)-fNj(k,l))*H(k,l);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|