Exercise 3 for the course "Parallel and distributed systems" of THMMY in AUTH university.
 
 
 
 
 

225 lines
4.7 KiB

function y = meanshift(x, h, varargin)
% MEANSHIFT - Mean shift implementation
%
% SYNTAX
%
% YOUT = MEANSHIFT( XIN, BAND )
% YOUT = MEANSHIFT( ..., 'epsilon', EPSILON )
% YOUT = MEANSHIFT( ..., 'verbose', VERBOSE )
% YOUT = MEANSHIFT( ..., 'display', DISPLAY )
%
% INPUT
%
% XIN Input data (for clustering) [n-by-d]
% BAND Bandwidth value [scalar]
%
% OPTIONAL
%
% EPSILON Threshold for convergence [scalar]
% {default: 1e-4*h}
% VERBOSE Print iteration number & error? [boolean]
% {default: false}
% DISPLAY Plot results of each iteration? [boolean]
% (only for 2D points)
% {default: false}
%
% OUTPUT
%
% YOUT Final points location after mean shift [n-by-d]
%
% DESCRIPTION
%
% YOUT = MEANSHIFT(XIN,BAND) implements mean shift algorithm on
% input points XIN, using Gaussian kernel with bandwidth BAND.
% The local maxima of each point is then recorded in the output
% array YOUT.
%
% DEPENDENCIES
%
% <none>
%
% LOCAL-FUNCTIONS
%
% rangesearch2sparse
% parseOptArgs
%
% See also kmeans
%
%% PARAMETERS
% stoping threshold
opt.epsilon = 1e-4*h;
opt.verbose = false;
opt.display = false;
%% PARSE OPTIONAL INPUTS
opt = parseOptArgs(opt, varargin{:});
%% INITIALIZATION
% number of points -- dimensionality
[n, d] = size( x );
% initialize output points to input points
y = x;
% mean shift vectors (initialize to infinite)
m = inf;
% iteration counter
iter = 0;
if opt.display && d == 2
fig = figure(1337);
set(fig, 'name', 'real_time_quiver')
end
norm(x)
while norm(m) > opt.epsilon % --- iterate unitl convergence
iter = iter + 1;
% find pairwise distance matrix (inside radius)
[I, D] = rangesearch( x, y, h );
D = cellfun( @(x) x.^2, D, 'UniformOutput', false );
W = rangesearch2sparse( I, D );
% compute kernel matrix
W = spfun( @(x) exp( -x / (2*h^2) ), W );
% make sure diagonal elements are 1
W = W + spdiags( ones(n,1), 0, n, n );
% compute new y vector
y_new = W * x;
% normalize vector
l = [sum(W, 2) sum(W, 2)];
y_new = y_new ./ l;
% calculate mean-shift vector
m = y_new - y;
if opt.display && d == 2
figure(1337)
clf
hold on
scatter( y(:,1), y(:,2) );
quiver( y(:,1), y(:,2), m(:,1), m(:,2), 0 );
pause(0.3)
end
% update y
y = y_new;
if opt.verbose
fprintf( ' Iteration %d - error %.2g\n', iter, norm(m) );
end
end % while (m > epsilon)
end
%% LOCAL FUNCTION: CREATE SPARSE MATRIX FROM RANGE SEARCH
function mat = rangesearch2sparse(idxCol, dist)
% INPUT idxCol Index columns for matrix [n-cell]
% dist Distances of points [n-cell]
% OUTPUT mat Sparse matrix with distances [n-by-n sparse]
% number of neighbors for each point
nNbr = cellfun( @(x) numel(x), idxCol );
% number of points
n = numel( idxCol );
% row indices (for sparse matrix formation convenience)
idxRow = arrayfun( @(n,i) i * ones( 1, n ), nNbr, (1:n)', ...
'UniformOutput', false );
% sparse matrix formation
mat = sparse( [idxRow{:}], [idxCol{:}], [dist{:}], n, n );
end
%% LOCAL FUNCTION: PARSE OPTIONAL ARGUMENTS
function opt = parseOptArgs (dflt, varargin)
% INPUT dflt Struct with default parameters [struct]
% <name-value pairs> [varargin]
% OUTPUT opt Updated parameters [struct]
%% INITIALIZATION
ip = inputParser;
ip.CaseSensitive = false;
ip.KeepUnmatched = false;
ip.PartialMatching = true;
ip.StructExpand = true;
%% PARAMETERS
argNames = fieldnames( dflt );
for i = 1 : length(argNames)
addParameter( ip, argNames{i}, dflt.(argNames{i}) );
end
%% PARSE AND RETURN
parse( ip, varargin{:} );
opt = ip.Results;
%% SET EMPTY VALUES TO DEFAULTS
for i = 1 : length(argNames)
if isempty( opt.(argNames{i}) )
opt.(argNames{i}) = dflt.(argNames{i});
end
end
end
%%------------------------------------------------------------
%
% AUTHORS
%
% Dimitris Floros fcdimitr@auth.gr
%
% VERSION
%
% 0.2 - January 04, 2018
%
% CHANGELOG
%
% 0.2 (Jan 04, 2018) - Dimitris
% * FIX: distance should be squared euclidean
% * FIX: range search radius should be bandwidth
%
% 0.1 (Dec 29, 2017) - Dimitris
% * initial implementation
%
% ------------------------------------------------------------