You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
6.5 KiB
194 lines
6.5 KiB
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "serial_declarations.h"
|
|
|
|
int NUMBER_OF_POINTS = 600;
|
|
int DIMENSIONS = 2;
|
|
char* POINTS_FILENAME = "data/X.bin";
|
|
char* LABELS_FILENAME = "data/L.bin";
|
|
|
|
struct timeval startwtime, endwtime;
|
|
double seq_time;
|
|
|
|
int meanshift(double **original_points, double ***shifted_points, int h
|
|
, parameters *opt, int iteration);
|
|
|
|
int main(int argc, char **argv){
|
|
int h = 1;
|
|
|
|
//get_args(argc, argv, &h); commented out while in development
|
|
|
|
FILE *f;
|
|
// f = fopen(X, "rb");
|
|
// fseek(f, 0L, SEEK_END);
|
|
// long int pos = ftell(f);
|
|
// fclose(f);
|
|
// int elements = pos / sizeof(double); // number of total elements (points*dimension)
|
|
// int points = elements/DIMENSIONS;
|
|
// //printf("points : %d \n", points);
|
|
f = fopen(POINTS_FILENAME, "rb");
|
|
double **vectors;
|
|
vectors = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
for (int i=0; i<NUMBER_OF_POINTS; i++){
|
|
int out = fread(vectors[i], sizeof(double), DIMENSIONS, f);
|
|
}
|
|
|
|
save_matrix(vectors, 0);
|
|
|
|
// initializing file that will contain the labels (train)
|
|
f = fopen(LABELS_FILENAME, "rb");
|
|
// NOTE : Labels were classified as <class 'numpy.uint8'>
|
|
// variables of type uint8 are stored as 1-byte (8-bit) unsigned integers
|
|
fseek(f, 0L, SEEK_END);
|
|
long int pos = ftell(f);
|
|
rewind(f);
|
|
//printf("position : %ld \n", pos);
|
|
int label_elements = pos/ sizeof(char);
|
|
char *labels = (char*)malloc(label_elements* sizeof(char));
|
|
fseek(f, 0L, SEEK_SET);
|
|
int out = fread(labels, sizeof(char), label_elements, f);
|
|
fclose(f);
|
|
|
|
// MEAN SHIFT OPTIONS
|
|
parameters params;
|
|
params.epsilon = 0.0001;
|
|
params.verbose = false;
|
|
params.display = false;
|
|
parameters *opt;
|
|
opt = ¶ms;
|
|
|
|
double **shifted_points;
|
|
// tic
|
|
gettimeofday (&startwtime, NULL);
|
|
|
|
int iterations = meanshift(vectors, &shifted_points, h, opt, 1);
|
|
|
|
// toc
|
|
gettimeofday (&endwtime, NULL);
|
|
seq_time = (double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 + endwtime.tv_sec - startwtime.tv_sec);
|
|
printf("%s wall clock time = %f\n","Mean Shift", seq_time);
|
|
|
|
//TODO write output points to file -> plot later
|
|
//save_matrix(shifted_points, iterations);
|
|
}
|
|
|
|
int meanshift(double **original_points, double ***shifted_points, int h
|
|
, parameters *opt, int iteration){
|
|
|
|
// allocates space and copies original points on first iteration
|
|
if (iteration == 1){
|
|
(*shifted_points) = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
duplicate(original_points, NUMBER_OF_POINTS, DIMENSIONS, shifted_points);
|
|
}
|
|
|
|
// mean shift vector
|
|
double **mean_shift_vector;
|
|
mean_shift_vector = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
// initialize elements of mean_shift_vector to inf
|
|
for (int i=0;i<NUMBER_OF_POINTS;i++){
|
|
for (int j=0;j<DIMENSIONS;j++){
|
|
mean_shift_vector[i][j] = DBL_MAX;
|
|
}
|
|
}
|
|
|
|
|
|
/** allocate memory **/
|
|
double **kernel_matrix = alloc_2d_double(NUMBER_OF_POINTS, NUMBER_OF_POINTS);
|
|
double *denominator = malloc(NUMBER_OF_POINTS * sizeof(double));
|
|
// create new y vector
|
|
double **new_shift = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
|
|
|
|
double * d_kernel_matrix;
|
|
cudaMalloc(&d_kernel_matrix, NUMBER_OF_POINTS * NUMBER_OF_POINTS * sizeof(double));
|
|
double * d_denominator;
|
|
cudaMalloc(&d_denominator, NUMBER_OF_POINTS * sizeof(double));
|
|
double * d_new_shift;
|
|
cudaMalloc(&d_new_shift, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double));
|
|
|
|
// (*shifted_points) = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
// duplicate(original_points, NUMBER_OF_POINTS, DIMENSIONS, shifted_points);
|
|
double * d_shifted_points;
|
|
cudaMalloc(&d_shifted_points, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double));
|
|
|
|
// double **mean_shift_vector;
|
|
// mean_shift_vector = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
double * d_mean_shift_vector;
|
|
cudaMalloc(&d_mean_shift_vector, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double));
|
|
|
|
//Copy vectors from host memory to device memory
|
|
cudaMemcpy(d_shifted_points, *shifted_points, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double),
|
|
cudaMemcpyHostToDevice);
|
|
// y[i][j] == d_y[COLUMNS*i + j]
|
|
cudaMemcpy(d_mean_shift_vector, mean_shift_vector, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double),
|
|
cudaMemcpyHostToDevice);
|
|
|
|
|
|
// TODO REFACTOR AS A KERNEL
|
|
// find pairwise distance matrix (inside radius)
|
|
// [I, D] = rangesearch(x,y,h);
|
|
for (int i=0; i<NUMBER_OF_POINTS; i++){
|
|
double sum = 0;
|
|
for (int j=0; j<NUMBER_OF_POINTS; j++){
|
|
double dist_sum = 0;
|
|
for (int p=0; p<DIMENSIONS; p++){
|
|
double dif = ((*shifted_points)[i])[p]-(original_points[j])[p];
|
|
dist_sum += dif * dif;
|
|
}
|
|
double dist = sqrt(dist_sum);
|
|
|
|
if (dist < h*h){
|
|
kernel_matrix[i][j] = dist * dist;
|
|
// compute kernel matrix
|
|
double pow = ((-1)*(kernel_matrix[i][j]))/(2*(h*h));
|
|
kernel_matrix[i][j] = exp(pow);
|
|
} else {
|
|
kernel_matrix[i][j] = 0;
|
|
}
|
|
if (i==j){
|
|
kernel_matrix[i][j] += 1;
|
|
}
|
|
sum = sum + kernel_matrix[i][j];
|
|
}
|
|
denominator[i] = sum;
|
|
|
|
// build nominator
|
|
for (int j=0; j<DIMENSIONS; j++){
|
|
new_shift[i][j] = 0;
|
|
for (int k=0; k<NUMBER_OF_POINTS; k++){
|
|
new_shift[i][j] += kernel_matrix[i][k] * original_points[k][j];
|
|
}
|
|
// divide element-wise
|
|
new_shift[i][j] = new_shift[i][j] / denominator[i];
|
|
// calculate mean-shift vector at the same time
|
|
mean_shift_vector[i][j] = new_shift[i][j] - (*shifted_points)[i][j];
|
|
}
|
|
}
|
|
|
|
|
|
// frees previously shifted points, they're now garbage
|
|
free((*shifted_points)[0]);
|
|
// updates shifted points pointer to the new array address
|
|
shifted_points = &new_shift;
|
|
|
|
save_matrix((*shifted_points), iteration);
|
|
|
|
double current_norm = norm(mean_shift_vector, NUMBER_OF_POINTS, DIMENSIONS);
|
|
printf("Iteration n. %d, error %f \n", iteration, current_norm);
|
|
|
|
// clean up this iteration's allocates
|
|
free(mean_shift_vector[0]);
|
|
free(mean_shift_vector);
|
|
free(kernel_matrix[0]);
|
|
free(kernel_matrix);
|
|
free(denominator);
|
|
|
|
/** iterate until convergence **/
|
|
if (current_norm > opt->epsilon) {
|
|
return meanshift(original_points, shifted_points, h, opt, ++iteration);
|
|
}
|
|
|
|
return iteration;
|
|
}
|