Exercise 3 for the course "Parallel and distributed systems" of THMMY in AUTH university.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

143 lines
5.4 KiB

#include "meanshift_kernels.h"
#include <stdio.h>
__global__ void calculate_kernel_matrix_kernel(Matrix shifted_points, Matrix original_points,
double deviation, Matrix kernel_matrix){
// each thread calculates one element of kernel_matrix
int row = blockIdx.x * blockDim.x + threadIdx.x;
int col = blockIdx.y * blockDim.y + threadIdx.y;
// performs calculations only if thread's indexes are within matrix bounds
if (row * kernel_matrix.width + col >= kernel_matrix.width * kernel_matrix.height){
return;
}
int dimensions = shifted_points.width;
// calculate distance
double sum = 0, dif;
for (int i=0; i<dimensions; i++){
dif = shifted_points.elements[row * dimensions + i]
- original_points.elements[col * dimensions + i];
sum += dif * dif;
}
double distance = sqrt(sum);
double deviation_square = deviation*deviation;
if (distance < deviation_square){
// computes kernel matrix
double pow = ((-1)*(distance * distance))/(2*(deviation_square));
kernel_matrix.elements[row * kernel_matrix.width + col] = exp(pow);
} else {
kernel_matrix.elements[row * kernel_matrix.width + col] = 0;
}
if (row == col){
kernel_matrix.elements[row * kernel_matrix.width + col] += 1;
}
}
__global__ void denominator_kernel(Matrix denominator, Matrix kernel_matrix){
// each thread computes one element of denominator_kernel
// by accumulating results into cell_value
double cell_value = 0;
int row = blockIdx.x * blockDim.x + threadIdx.x;
// performs calculations only if thread's indexes are within matrix bounds
if (row >= denominator.height){
return;
}
for (int column = 0; column < kernel_matrix.width; ++column){
cell_value += kernel_matrix.elements[row * kernel_matrix.width + column];
}
denominator.elements[row] = cell_value;
}
__global__ void shift_points_kernel(Matrix original_points, Matrix kernel_matrix,
Matrix shifted_points, Matrix new_shift, Matrix denominator, Matrix mean_shift_vector){
// each thread computes one element of new_shift
// by accumulating results into cell_value
double cell_value = 0;
int row = blockIdx.x * blockDim.x + threadIdx.x;
int col = blockIdx.y * blockDim.y + threadIdx.y;
// performs calculations only if thread's indexes are within matrix bounds
if (row * new_shift.width + col >= new_shift.width * new_shift.height){
return;
}
// calculates new_shift
// builds nominator by multiplying kernel_matrix and original_points
for (int element_index = 0; element_index < kernel_matrix.width; ++element_index){
cell_value += kernel_matrix.elements[row * kernel_matrix.width + element_index]
* original_points.elements[element_index * original_points.width + col];
}
// new_shift elements are calculated by dividing with the denominator
new_shift.elements[row * new_shift.width + col] =
cell_value / denominator.elements[row];
// calculates mean-shift vector
mean_shift_vector.elements[row * new_shift.width + col] =
new_shift.elements[row * new_shift.width + col] -
shifted_points.elements[row * new_shift.width + col];
}
__global__ void norm(Matrix mean_shift_vector, double *current_norm) {
// each thread computes one element of new_shift
// by accumulating results into cell_value
double cell_value = 0;
int row = blockIdx.x * blockDim.x + threadIdx.x;
// performs calculations only if thread's indexes are within matrix bounds
if (row >= mean_shift_vector.height){
return;
}
// for (int column = 0; column < kernel_matrix.width; ++column){
// cell_value += kernel_matrix.elements[row * kernel_matrix.width + column];
// }
// performs calculations only if thread's indexes are within matrix bounds
// if (row * mean_shift_vector.width + col >= mean_shift_vector.width * mean_shift_vector.height){
// return;
// }
for (int element_index = 0; element_index < mean_shift_vector.width; ++element_index){
cell_value += mean_shift_vector.elements[row * mean_shift_vector.width + element_index]
* mean_shift_vector.elements[row * mean_shift_vector.width + element_index];
}
*current_norm = sqrt(cell_value);
// // new_shift elements are calculated by dividing with the denominator
// new_shift.elements[row * new_shift.width + col] =
// cell_value / denominator.elements[row];
//
// // calculates mean-shift vector
// mean_shift_vector.elements[row * new_shift.width + col] =
// new_shift.elements[row * new_shift.width + col] -
// shifted_points.elements[row * new_shift.width + col];
// int n_tid = 2 * (threadIdx.x + blockIdx.x * blockDim.x);
// int i = 1;
// int initial_tid = n_tid / 2;
// int limit = gridDim.x * blockDim.x;
// int block_end = 2 * (blockIdx.x * blockDim.x + blockDim.x) - 1;
//
// if (n_tid < (2 * limit)){
//
// while ( (i < (2 * blockDim.x)) && n_tid < block_end &&
// (n_tid + i) <= block_end){
//
// norms[n_tid] += norms[n_tid + i];
// n_tid = n_tid + i * (initial_tid * 2 - 2 * (blockIdx.x * blockDim.x));
// i *= 2;
// __syncthreads();
// }
//
//
// if (!((initial_tid) % blockDim.x))
// norm_per_block[blockIdx.x] = norms[n_tid];
//
// }
}