Exercise 3 for the course "Parallel and distributed systems" of THMMY in AUTH university.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

367 lines
11 KiB

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdbool.h>
#include <math.h>
#define X "data/X.bin"
#define L "data/L.bin"
#define COLUMNS 2
#define ROWS 600
struct parameters {
double epsilon;
bool verbose;
bool display;
};
double **alloc_2d_double(int rows, int cols);
double **duplicate(double **a, double **b, int rows, int cols);
void meanshift(double **x, int h, struct parameters *opt);
double norm(double ** m, int rows, int cols);
void multiply(double ** matrix1, double ** matrix2, double ** output);
double calculateDistance(double *, double *);
void print_matrix(double ** array, int rows, int cols);
struct timeval startwtime, endwtime;
double seq_time;
int main(int argc, char **argv){
// if (argc<2){
// printf("%s\n", "Specify the k");
// return 1;
// }
// = atoi(argv[1]); // the k-parameter
FILE *f;
// f = fopen(X, "rb");
// fseek(f, 0L, SEEK_END);
// long int pos = ftell(f);
// fclose(f);
// int elements = pos / sizeof(double); // number of total elements (points*dimension)
// int points = elements/COLUMNS;
// //printf("points : %d \n", points);
f = fopen(X, "rb");
double ** vectors;
vectors = alloc_2d_double(ROWS, COLUMNS);
for (int i=0; i<ROWS; i++){
int out = fread(vectors[i], sizeof(double), COLUMNS, f);
}
//printf("test : %f \n", vectors[0][0]);
//printf("test : %f \n", vectors[ROWS-1][COLUMNS-1]);
// initializing file that will contain the labels (train)
f = fopen(L, "rb");
// NOTE : Labels were classified as <class 'numpy.uint8'>
// variables of type uint8 are stored as 1-byte (8-bit) unsigned integers
fseek(f, 0L, SEEK_END);
long int pos = ftell(f);
rewind(f);
//printf("position : %ld \n", pos);
int label_elements = pos/ sizeof(char);
char *labels = (char*)malloc(label_elements* sizeof(char));
fseek(f, 0L, SEEK_SET);
int out = fread(labels, sizeof(char), label_elements, f);
fclose(f);
// MEAN SHIFT OPTIONS
int h = 1;
struct parameters params;
params.epsilon = 0.0001;
params.verbose = false;
params.display = false;
struct parameters *opt;
opt = &params;
// tic
gettimeofday (&startwtime, NULL);
meanshift(vectors, h, opt);
// toc
gettimeofday (&endwtime, NULL);
seq_time = (double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 + endwtime.tv_sec - startwtime.tv_sec);
printf("%s wall clock time = %f\n","Mean Shift", seq_time);
//TODO write output points to file -> plot later
}
void meanshift(double **x, int h, struct parameters *opt){
double **y;
y = alloc_2d_double(ROWS, COLUMNS);
y = duplicate(x, y, ROWS, COLUMNS);
// mean shift vectors
double **m;
m = alloc_2d_double(ROWS, COLUMNS);
// initialize elements of m to inf
for (int i=0;i<ROWS;i++){
for (int j=0;j<COLUMNS;j++){
m[i][j] = DBL_MAX;
}
}
// initialize iteration counter
int iter = 0;
// printf("%f \n", opt->epsilon);
/** iterate until convergence **/
// printf("norm : %f \n", norm(m, ROWS, COLUMNS));
/** allocate memory **/
double ** W = alloc_2d_double(ROWS, ROWS);
double * l = malloc(ROWS * sizeof(double));
double * d_W;
cudaMalloc(&d_W, ROWS * ROWS * sizeof(double));
double * d_I;
cudaMalloc(&d_I, ROWS * sizeof(double));
double * d_y_new;
cudaMalloc(&d_y_new, ROWS * COLUMNS * sizeof(double));
double * d_y;
cudaMalloc(&d_y, ROWS * COLUMNS * sizeof(double));
double * d_m;
cudaMalloc(&d_m, ROWS * COLUMNS * sizeof(double));
//Copy vectors from host memory to device memory
cudaMemcpy(d_y, y, ROWS * COLUMNS * sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_m, m, ROWS * COLUMNS * sizeof(double), cudaMemcpyHostToDevice);
while (norm(m, ROWS, COLUMNS) > opt->epsilon) {
iter = iter +1;
// find pairwise distance matrix (inside radius)
/** allocate memory for inside iteration arrays **/
double ** W = alloc_2d_double(ROWS, ROWS);
double * l = malloc(ROWS * sizeof(double));
// [I, D] = rangesearch(x,y,h);
for (int i=0; i<ROWS; i++){
for (int j=0; j<ROWS; j++){
double dist = calculateDistance(y[i],x[j]);
// 2sparse matrix
if (dist < h){
W[i][j] = dist;
//printf("%f \n", W[i][j]);
}else{
W[i][j] = 0;
}
}
}
// for each element of W (x) do x^2
// size of W is [600 600]
// W is a sparse matrix -> apply to non-zero elements
for (int i=0; i<ROWS; i++){
double sum =0;
for (int j=0; j < ROWS; j++){
if (W[i][j] != 0){
W[i][j] = W[i][j]*W[i][j];
// compute kernel matrix
// apply function to non zero elements of a sparse matrix
double pow = ((-1)*(W[i][j]))/(2*(h*h));
W[i][j] = exp(pow);
}
// make sure diagonal elements are 1
if (i==j){
W[i][j] = W[i][j] +1;
}
// calculate sum(W,2)
sum = sum + W[i][j];
}
/** l array is correct**/
l[i] = sum;
// printf("l[%d] : %f \n", i, l[i]);
}
/** W is correct**/
//print_matrix(W, ROWS, ROWS);
// create new y vector
double** y_new = alloc_2d_double(ROWS, COLUMNS);
multiply(W, x, y_new);
/** y_new is CORRECT **/
// print_matrix(y_new, ROWS, COLUMNS);
// divide element-wise
for (int i=0; i<ROWS; i++){
for (int j=0; j<COLUMNS; j++){
y_new[i][j] = y_new[i][j] / l[i];
}
}
// calculate mean-shift vector
for (int i=0; i<ROWS; i++){
for (int j=0; j<COLUMNS; j++){
m[i][j] = y_new[i][j] - y[i][j];
// update y
y[i][j] = y_new[i][j];
}
}
printf("Iteration n. %d, error %f \n", iter, norm(m, ROWS, COLUMNS));
// TODO maybe keep y for live display later?
};
}
// allocates a 2d array in continuous memory positions
double **alloc_2d_double(int rows, int cols) {
double *data = (double *)malloc(rows*cols*sizeof(double));
double **array= (double **)malloc(rows*sizeof(double*));
for (int i=0; i<rows; i++)
array[i] = &(data[cols*i]);
return array;
}
// copy the values of a 2d double array to another
double **duplicate(double **a, double **b, int rows, int cols){
for (int i=0;i<rows;i++){
for (int j=0;j<cols;j++){
b[i][j] = a[i][j];
}
}
return b;
}
// TODO check why there's is a difference in the norm calculate in matlab
double norm(double ** m, int rows, int cols){
double sum=0, a=0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
a = m[i][j] * m[i][j];
sum = sum + a;
}
}
double norm = sqrt(sum);
return norm;
}
double calculateDistance(double *y, double *x){
double sum = 0, dif;
for (int i=0;i<COLUMNS;i++){
dif = y[i]-x[i];
sum += dif * dif;
}
double distance = sqrt(sum);
return distance;
}
void multiply(double ** matrix1, double ** matrix2, double ** output){
// W dims are ROWS ROWS and x dims are ROWS COLUMNS
int i, j, k;
for (i=0; i<ROWS; i++){
for (j=0; j<COLUMNS; j++){
output[i][j] = 0;
for (k=0; k<ROWS; k++){
output[i][j] += matrix1[i][k] * matrix2[k][j];
}
}
}
}
void print_matrix(double ** array, int rows, int cols){
for (int i=0; i<cols; i++){
for (int j=0; j<rows; j++){
printf("%f ", array[j][i]);
}
printf("\n");
}
}
__global__ void iteration (double norm, double epsilon){
// TODO check if they also need cudamalloc
int iter;
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.x * blockIdx.x + threadIdx.x;
while (norm > epsilon){
// TODO ITERATION
iter = iter +1;
// find pairwise distance matrix (inside radius)
/** allocate memory for inside iteration arrays **/
// TODO ALLOCATE MEMORY BEFORE CALLING KERNEL
// double ** W = alloc_2d_double(ROWS, ROWS);
// double * l = malloc(ROWS * sizeof(double));
// [I, D] = rangesearch(x,y,h);
for (int i=0; i<ROWS; i++){
for (int j=0; j<ROWS; j++){
// TODO REFACTOR CALCULATE DISTANCE
double dist = calculateDistance(y[i],x[j]);
// 2sparse matrix
if (dist < h){
W[i][j] = dist;
//printf("%f \n", W[i][j]);
}else{
W[i][j] = 0;
}
}
}
// for each element of W (x) do x^2
// size of W is [600 600]
// W is a sparse matrix -> apply to non-zero elements
for (int i=0; i<ROWS; i++){
double sum =0;
for (int j=0; j < ROWS; j++){
if (W[i][j] != 0){
W[i][j] = W[i][j]*W[i][j];
// compute kernel matrix
// apply function to non zero elements of a sparse matrix
double pow = ((-1)*(W[i][j]))/(2*(h*h));
W[i][j] = exp(pow);
}
// make sure diagonal elements are 1
if (i==j){
W[i][j] = W[i][j] +1;
}
// calculate sum(W,2)
sum = sum + W[i][j];
}
/** l array is correct**/
l[i] = sum;
// printf("l[%d] : %f \n", i, l[i]);
}
/** W is correct**/
//print_matrix(W, ROWS, ROWS);
// create new y vector
double** y_new = alloc_2d_double(ROWS, COLUMNS);
multiply(W, x, y_new);
/** y_new is CORRECT **/
// print_matrix(y_new, ROWS, COLUMNS);
// divide element-wise
for (int i=0; i<ROWS; i++){
for (int j=0; j<COLUMNS; j++){
y_new[i][j] = y_new[i][j] / l[i];
}
}
// calculate mean-shift vector
for (int i=0; i<ROWS; i++){
for (int j=0; j<COLUMNS; j++){
m[i][j] = y_new[i][j] - y[i][j];
// update y
y[i][j] = y_new[i][j];
}
}
printf("Iteration n. %d, error %f \n", iter, norm(m, ROWS, COLUMNS));
// TODO maybe keep y for live display later?
}
}