Exercise 4 for the course "Parallel and distributed systems" of THMMY in AUTH university.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

129 lines
3.0 KiB

/*
* =============================================================
* pagerank_mult.c Compute the matrix vector multiplication
* between the PageRank matrix and a vector
*
* David Gleich
* Stanford University
* 14 February 2006
* =============================================================
*/
#include "mex.h"
/*
* The mex function just computes one matrix-vector product.
*
* function y = pagerank_mult(x,Pt,c,d,v)
* y = c*Pt*x + (c*(d'*x))*v + (1-c)*sum(x)*v;
*/
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int i, j, k;
int n, mrows, ncols;
/* sparse matrix */
int *A_row, *A_col;
double *A_val;
double *x, *d, *v;
double c;
double *y;
double sum_x;
double dtx;
double xval;
if (nrhs != 5)
{
mexErrMsgTxt("5 inputs required.");
}
else if (nlhs > 1)
{
mexErrMsgTxt("Too many output arguments");
}
mrows = mxGetM(prhs[1]);
ncols = mxGetN(prhs[1]);
if (mrows != ncols ||
!mxIsSparse(prhs[1]) ||
!mxIsDouble(prhs[1]) ||
mxIsComplex(prhs[1]))
{
mexErrMsgTxt("Input must be a noncomplex square sparse matrix.");
}
/* okay, the second input passes */
n = mrows;
/* The first input must be a vector. */
if (mxGetM(prhs[0])*mxGetN(prhs[0]) != n ||
mxIsSparse(prhs[0]) || !mxIsDouble(prhs[0]))
{
mexErrMsgTxt("Invalid vector 1.");
}
/* The third input must be a scalar. */
if (mxGetM(prhs[2])*mxGetN(prhs[2]) != 1 || !mxIsDouble(prhs[0]))
{
mxErrMsgTxt("Invalid scalar 3.");
}
/* The fourth input must be a scalar. */
if (mxGetM(prhs[3])*mxGetN(prhs[3]) != n ||
mxIsSparse(prhs[3]) || !mxIsDouble(prhs[3]))
{
mexErrMsgTxt("Invalid vector 4.");
}
/* The fifth input must be a scalar. */
if (mxGetM(prhs[4])*mxGetN(prhs[4]) != n ||
mxIsSparse(prhs[4]) || !mxIsDouble(prhs[4]))
{
mexErrMsgTxt("Invalid vector 5.");
}
/* Get the sparse matrix */
A_val = mxGetPr(prhs[1]);
A_row = mxGetIr(prhs[1]);
A_col = mxGetJc(prhs[1]);
/* Get the vector x */
x = mxGetPr(prhs[0]);
/* Get the vector d */
d = mxGetPr(prhs[3]);
/* Get the vector v */
v = mxGetPr(prhs[4]);
c = mxGetScalar(prhs[2]);
plhs[0] = mxCreateDoubleMatrix(n,1,mxREAL);
y = mxGetPr(plhs[0]);
sum_x = 0.0;
dtx = 0.0;
for (i = 0; i < n; i++)
{
xval = x[i];
sum_x += xval;
dtx += d[i]*xval;
for (j = A_col[i]; j < A_col[i+1]; ++j)
{
y[A_row[j]] += c*A_val[j]*xval;
}
}
xval = c*dtx + (1-c)*sum_x;
for (i=0; i < n;i++)
{
y[i] += xval*v[i];
}
}