Exercise 4 for the course "Parallel and distributed systems" of THMMY in AUTH university.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

454 lines
14 KiB

#include "serial_gs_pagerank_functions.h"
const char *ARGUMENT_CONVERGENCE_TOLERANCE = "-c";
const char *ARGUMENT_MAX_ITERATIONS = "-m";
const char *ARGUMENT_DAMPING_FACTOR = "-a";
const char *ARGUMENT_VERBAL_OUTPUT = "-v";
const char *ARGUMENT_OUTPUT_HISTORY = "-h";
const char *ARGUMENT_OUTPUT_FILENAME = "-o";
const int NUMERICAL_BASE = 10;
char *DEFAULT_OUTPUT_FILENAME = "pagerank_output";
const int FILE_READ_BUFFER_SIZE = 4096;
// ==================== PAGERANK ====================
int pagerank(SparseMatrix *transitionMatrix, double **pagerankVector,
bool *convergenceStatus, Parameters parameters) {
int iterations = 0;
double delta,
*vectorDifference = (double *) malloc(parameters.numberOfPages * sizeof(double)),
*previousPagerankVector = (double *) malloc(parameters.numberOfPages * sizeof(double)),
*convergedPagerankVector = (double *) malloc(parameters.numberOfPages * sizeof(double)),
*linksFromConvergedPagesPagerankVector = (double *) malloc(parameters.numberOfPages * sizeof(double));
SparseMatrix linksFromConvergedPages = createSparseMatrix();
bool *converganceMatrix = (bool *) malloc(parameters.numberOfPages * sizeof(bool));
*convergenceStatus = false;
for (int i=0; i<parameters.numberOfPages; ++i) {
convergedPagerankVector[i] = 0;
converganceMatrix[i] = false;
linksFromConvergedPagesPagerankVector[i] = 0;
}
if (parameters.verbose) {
printf(ANSI_COLOR_YELLOW "\n----- Starting iterations -----\n" ANSI_COLOR_RESET);
}
do {
memcpy(previousPagerankVector, *pagerankVector, parameters.numberOfPages * sizeof(double));
matrixVectorMultiplication(transitionMatrix, previousPagerankVector,
pagerankVector, parameters.numberOfPages, parameters.dampingFactor);
for (int i=0; i<parameters.numberOfPages; ++i) {
(*pagerankVector)[i] += linksFromConvergedPagesPagerankVector[i] + convergedPagerankVector[i];
}
if (parameters.history) {
savePagerankToFile(parameters.outputFilename, iterations != 0,
*pagerankVector, parameters.numberOfPages);
}
for (int i=0; i<parameters.numberOfPages; ++i) {
vectorDifference[i] = (*pagerankVector)[i] - previousPagerankVector[i];
}
delta = vectorNorm(vectorDifference, parameters.numberOfPages);
if (delta < parameters.convergenceCriterion) {
*convergenceStatus = true;
}
if (iterations && (!iterations % 10)) {
for (int i=0; i<parameters.numberOfPages; ++i) {
double temp = fabs((*pagerankVector)[i] - previousPagerankVector[i]) / fabs(previousPagerankVector[i]);
if (temp < parameters.convergenceCriterion){
converganceMatrix[i] = true;
convergedPagerankVector[i] = (*pagerankVector)[i];
}
}
for (int i=0; i<parameters.numberOfPages; ++i) {
if (converganceMatrix[i] == true) {
for (int j=0; j<parameters.numberOfPages; ++j){
if (converganceMatrix[j] == false){
SparseMatrixElement *element = getElement(*transitionMatrix, i, j);
if (element != NULL) {
apendElement(&linksFromConvergedPages, element->value, i, j);
}
}
deleteElement(transitionMatrix, i, j);
deleteElement(transitionMatrix, j, i);
}
sparseMatrixVectorMultiplication(linksFromConvergedPages, *pagerankVector,
&linksFromConvergedPagesPagerankVector, parameters.numberOfPages);
}
}
}
++iterations;
if (iterations%2) {
printf(ANSI_COLOR_BLUE "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, iterations, delta);
} else {
printf(ANSI_COLOR_CYAN "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, iterations, delta);
}
} while (!*convergenceStatus &&
(parameters.maxIterations == 0 || iterations < parameters.maxIterations));
if (!parameters.history) {
savePagerankToFile(parameters.outputFilename, false, *pagerankVector,
parameters.numberOfPages);
}
return iterations;
}
// ==================== INITIALIZATION ====================
/*
* initialize allocates required memory for arrays, reads the web graph from the
* from the file and creates the initial transition probability distribution
* matrix.
*/
void initialize(SparseMatrix *transitionMatrix,
double **pagerankVector, Parameters *parameters) {
// Reads web graph from file
if ((*parameters).verbose) {
printf(ANSI_COLOR_YELLOW "----- Reading graph from file -----\n" ANSI_COLOR_RESET);
}
generateNormalizedTransitionMatrixFromFile(transitionMatrix, parameters);
// Outputs the algorithm parameters to the console
if ((*parameters).verbose) {
printf(ANSI_COLOR_YELLOW "\n----- Running with parameters -----\n" ANSI_COLOR_RESET\
"Number of pages: %d", (*parameters).numberOfPages);
if (!(*parameters).maxIterations) {
printf("\nMaximum number of iterations: inf");
} else {
printf("\nMaximum number of iterations: %d", (*parameters).maxIterations);
}
printf("\nConvergence criterion: %f" \
"\nDamping factor: %f" \
"\nGraph filename: %s\n", (*parameters).convergenceCriterion,
(*parameters).dampingFactor, (*parameters).graphFilename);
}
// Allocates memory for the pagerank vector
(*pagerankVector) = (double *) malloc((*parameters).numberOfPages * sizeof(double));
double webUniformProbability = 1. / (*parameters).numberOfPages;
for (int i=0; i<(*parameters).numberOfPages; ++i) {
(*pagerankVector)[i] = webUniformProbability;
}
// Transposes the transition matrix (P^T).
transposeSparseMatrix(transitionMatrix);
}
// ==================== MATH UTILS ====================
/*
* matrixVectorMultiplication calculates the product of the multiplication
* between a matrix and the a vector in a cheap way.
*/
void matrixVectorMultiplication(SparseMatrix *transitionMatrix, double *previousPagerankVector,
double **pagerankVector, int vectorSize, double dampingFactor) {
double webUniformProbability = 1. / vectorSize;
sparseMatrixVectorMultiplication(*transitionMatrix, previousPagerankVector,
pagerankVector, vectorSize);
for (int i=0; i<vectorSize; ++i) {
(*pagerankVector)[i] = dampingFactor * (*pagerankVector)[i];
}
double normDifference = vectorNorm(previousPagerankVector, vectorSize) -
vectorNorm(*pagerankVector, vectorSize);
for (int i=0; i<vectorSize; ++i) {
(*pagerankVector)[i] += normDifference * webUniformProbability;
}
}
/*
* vectorNorm calculates the first norm of a vector.
*/
double vectorNorm(double *vector, int vectorSize) {
double norm = 0.;
for (int i=0; i<vectorSize; ++i) {
norm += fabs(vector[i]);
}
return norm;
}
// ==================== PROGRAM INPUT AND OUTPUT UTILS ====================
/*
* parseArguments parses the command line arguments given by the user.
*/
void parseArguments(int argumentCount, char **argumentVector, Parameters *parameters) {
if (argumentCount < 2 || argumentCount > 10) {
validUsage(argumentVector[0]);
}
(*parameters).numberOfPages = 0;
(*parameters).maxIterations = 0;
(*parameters).convergenceCriterion = 1;
(*parameters).dampingFactor = 0.85;
(*parameters).verbose = false;
(*parameters).history = false;
(*parameters).outputFilename = DEFAULT_OUTPUT_FILENAME;
char *endPointer;
int argumentIndex = 1;
while (argumentIndex < argumentCount) {
if (!strcmp(argumentVector[argumentIndex], ARGUMENT_CONVERGENCE_TOLERANCE)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
double convergenceInput = strtod(argumentVector[argumentIndex], &endPointer);
if (convergenceInput == 0) {
printf("Invalid convergence argument\n");
exit(EXIT_FAILURE);
}
(*parameters).convergenceCriterion = convergenceInput;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_MAX_ITERATIONS)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
size_t iterationsInput = strtol(argumentVector[argumentIndex], &endPointer, NUMERICAL_BASE);
if (iterationsInput == 0 && endPointer) {
printf("Invalid iterations argument\n");
exit(EXIT_FAILURE);
}
(*parameters).maxIterations = iterationsInput;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_DAMPING_FACTOR)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
double alphaInput = strtod(argumentVector[argumentIndex], &endPointer);
if ((alphaInput == 0 || alphaInput > 1) && endPointer) {
printf("Invalid alpha argument\n");
exit(EXIT_FAILURE);
}
(*parameters).dampingFactor = alphaInput;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_VERBAL_OUTPUT)) {
(*parameters).verbose = true;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_OUTPUT_HISTORY)) {
(*parameters).history = true;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_OUTPUT_FILENAME)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
if (fopen(argumentVector[argumentIndex], "w") == NULL) {
printf("Invalid output filename. Reverting to default.\n");
continue;
}
(*parameters).outputFilename = argumentVector[argumentIndex];
} else if (argumentIndex == argumentCount - 1) {
(*parameters).graphFilename = argumentVector[argumentIndex];
} else {
validUsage(argumentVector[0]);
exit(EXIT_FAILURE);
}
++argumentIndex;
}
}
/*
* readGraphFromFile loads the file supplied in the command line arguments to an
* array (directedWebGraph) that represents the graph.
*/
void generateNormalizedTransitionMatrixFromFile(SparseMatrix *transitionMatrix,
Parameters *parameters){
FILE *graphFile;
// Opens the file for reading
graphFile = fopen((*parameters).graphFilename, "r+");
if (!graphFile) {
printf("Error opening file \n");
exit(EXIT_FAILURE);
}
char buffer[FILE_READ_BUFFER_SIZE];
char *readResult;
// Skips the first two lines
readResult = fgets(buffer, FILE_READ_BUFFER_SIZE, graphFile);
readResult = fgets(buffer, FILE_READ_BUFFER_SIZE, graphFile);
if (readResult == NULL) {
printf("Error while reading from the file. Does the file have the correct format?\n");
exit(EXIT_FAILURE);
}
// Third line contains the numbers of nodes and edges
int numberOfNodes = 0, numberOfEdges;
readResult = fgets(buffer, FILE_READ_BUFFER_SIZE, graphFile);
if (readResult == NULL) {
printf("Error while reading from the file. Does the file have the correct format?\n");
exit(EXIT_FAILURE);
}
// Parses the number of nodes and number of edges
{
// Splits string to whitespace
char *token = strtok(buffer, " ");
bool nextIsNodes = false, nextIsEdges = false;
while (token != NULL) {
if (strcmp(token, "Nodes:") == 0) {
nextIsNodes = true;
} else if (nextIsNodes) {
numberOfNodes = atoi(token);
nextIsNodes = false;
} else if (strcmp(token, "Edges:") == 0) {
nextIsEdges = true;
} else if (nextIsEdges) {
numberOfEdges = atoi(token);
break;
}
// Gets next string token
token = strtok (NULL, " ,.-");
}
}
if ((*parameters).verbose) {
printf("File claims number of pages is: %d\nThe number of edges is: %d\n",
numberOfNodes, numberOfEdges);
}
// Skips the fourth line
readResult = fgets(buffer, 512, graphFile);
if (readResult == NULL) {
printf("Error while reading from the file. Does the file have the correct format?\n");
exit(EXIT_FAILURE);
}
printf("SIZE OF STRUCT = %lu Bytes\n", sizeof(SparseMatrixElement));
int fivePercentIncrements = (int) numberOfEdges/20;
int maxPageIndex = 0;
fivePercentIncrements = fivePercentIncrements != 0 ? fivePercentIncrements : 1;
for (int i=0; i<numberOfEdges; i++) {
if (((*parameters).verbose) && ((i % fivePercentIncrements) == 0)) {
int percentage = (i/fivePercentIncrements)*5;
printf("%d%% done", percentage);
if (percentage%20 == 0) {
printf("\n");
} else {
printf(" •••• ");
}
}
int fileFrom = 0, fileTo = 0;
if (!fscanf(graphFile, "%d %d", &fileFrom, &fileTo)) {
break;
}
if (fileFrom > maxPageIndex) {
maxPageIndex = fileFrom;
}
apendElement(transitionMatrix, 1, fileFrom, fileTo);
}
if ((*parameters).verbose) {
printf("Max page index found is: %d\n", maxPageIndex);
}
(*parameters).numberOfPages = maxPageIndex + 1;
// Calculates the outdegree of each page and assigns the uniform probability
// of transition to the elements of the corresponding row
int currentRow = transitionMatrix->firstElement->rowIndex;
SparseMatrixElement *startElement = transitionMatrix->firstElement;
while(true) {
int pageOutdegree = 1;
SparseMatrixElement *currentElement = startElement->nextElement;
// Calculates current page's outdegree
while (currentElement != NULL) {
if (currentElement->rowIndex == currentRow) {
++pageOutdegree;
currentElement = currentElement->nextElement;
} else {
break;
}
}
// Assigns the value 1/outdegree to current page's columns
currentElement = startElement;
double pageUniformProbability = 1. / pageOutdegree;
for (int i=0; i<pageOutdegree; ++i) {
if (currentElement->rowIndex == currentRow) {
currentElement->value = pageUniformProbability;
currentElement = currentElement->nextElement;
} else {
break;
}
}
// Reached the last element;
if (currentElement == NULL) {
break;
}
startElement = currentElement;
currentRow = startElement->rowIndex;
}
fclose(graphFile);
}
/*
* validUsage outputs a message to the console that informs the user of the
* correct (valid) way to use the program.
*/
void validUsage(char *programName) {
printf("%s [-c convergence_criterion] [-m max_iterations] [-a alpha] [-v] [-h] [-o output_filename] <graph_file>" \
"\n-c convergence_criterion" \
"\n\tthe convergence tolerance criterion" \
"\n-m max_iterations" \
"\n\tmaximum number of iterations to perform" \
"\n-a alpha" \
"\n\tthe damping factor" \
"\n-v enable verbal output" \
"\n-h enable history output to file" \
"\n-o output_filename" \
"\n\tfilename and path for the output" \
"\n", programName);
exit(EXIT_FAILURE);
}
/*
* checkIncrement is a helper function for parseArguments function.
*/
int checkIncrement(int previousIndex, int maxIndex, char *programName) {
if (previousIndex == maxIndex) {
validUsage(programName);
exit(EXIT_FAILURE);
}
return ++previousIndex;
}
void savePagerankToFile(char *filename, bool append, double *pagerankVector,
int vectorSize) {
FILE *outputFile;
if (append) {
outputFile = fopen(filename, "a");
} else {
outputFile = fopen(filename, "w");
}
if (outputFile == NULL) {
printf("Error while opening the output file.\n");
return;
}
for (int i=0; i<vectorSize; ++i) {
fprintf(outputFile, "%f ", pagerankVector[i]);
}
fprintf(outputFile, "\n");
fclose(outputFile);
}