Browse Source

Add hierarchical clustering

master
Apostolos Fanakis 6 years ago
parent
commit
11593acac6
  1. 30
      spike_sorting.m

30
spike_sorting.m

@ -39,7 +39,7 @@ for fileIndex=1:8
dataMedian = median(abs(data)/0.6745);
datasetMedians(fileIndex) = dataMedian;
parfor factorIteration=1:numberOfFactors % runs for each k
for factorIteration=1:numberOfFactors % runs for each k
% builds threshold
thresholdFactor = thresholdFactorInitValue + (factorIteration - 1) * thresholdFactorStep;
threshold = thresholdFactor * dataMedian;
@ -258,6 +258,8 @@ for fileIndex=1:4
fprintf('Accuracy achieved is %.2f%%\n\n', accuracy);
% clustering using DB-SCAN algorithm
% code for DB-SCAN downloaded from here:
% https://www.peterkovesi.com/matlabfns/
[~, dbScanClasses, ~] = dbscan(features(:, 6:7)', 0.4, 20);
% fixes classes enumeration
dbScanClasses(dbScanClasses==1) = 7;
@ -276,6 +278,28 @@ for fileIndex=1:4
accuracy = classperf(spikeClass',dbScanClasses);
fprintf('Accuracy achieved with DB-SCAN is %.2f%%\n\n', accuracy.CorrectRate*100);
% hierarchical clustering
distances = pdist(features(:, 6:7));
linkages = linkage(distances, 'ward');
hierarchicalClusters = cluster(linkages, 'maxclust', 3);
% fixes classes enumeration
hierarchicalClusters(hierarchicalClusters==1) = 7;
hierarchicalClusters(hierarchicalClusters==2) = 1;
hierarchicalClusters(hierarchicalClusters==7) = 2;
figure();
scatter(features(hierarchicalClusters == 0, 6), features(hierarchicalClusters == 0, 7), [], 'k', 'o');
hold on;
scatter(features(hierarchicalClusters == 2, 6), features(hierarchicalClusters == 2, 7), [], 'r', '*');
scatter(features(hierarchicalClusters == 3, 6), features(hierarchicalClusters == 3, 7), [], 'g', '*');
scatter(features(hierarchicalClusters == 1, 6), features(hierarchicalClusters == 1, 7), [], 'b', '*');
title(['Dataset #' num2str(fileIndex) ' feature plot after clustering with K-Means']);
xlabel('PCA feature 1');
ylabel('PCA feature 2');
accuracy = classperf(spikeClass',hierarchicalClusters);
fprintf('Accuracy achieved with K-Means is %.2f%%\n\n', accuracy.CorrectRate*100);
% clustering using kmeans algorithm
rng(1); % For reproducibility
kMeansClasses = kmeans(features(:, 6:7), 3);
@ -283,12 +307,12 @@ for fileIndex=1:4
kMeansClasses(kMeansClasses==2) = 7;
kMeansClasses(kMeansClasses==3) = 2;
kMeansClasses(kMeansClasses==7) = 3;
figure();
scatter(features(kMeansClasses == 0, 6), features(kMeansClasses == 0, 7), [], 'k', 'o');
scatter(features(kMeansClasses == 1, 6), features(kMeansClasses == 1, 7), [], 'b', '*');
hold on;
scatter(features(kMeansClasses == 2, 6), features(kMeansClasses == 2, 7), [], 'r', '*');
scatter(features(kMeansClasses == 3, 6), features(kMeansClasses == 3, 7), [], 'g', '*');
scatter(features(kMeansClasses == 1, 6), features(kMeansClasses == 1, 7), [], 'b', '*');
title(['Dataset #' num2str(fileIndex) ' feature plot after clustering with K-Means']);
xlabel('PCA feature 1');
ylabel('PCA feature 2');

Loading…
Cancel
Save