|
|
@ -11,7 +11,7 @@ |
|
|
|
%% |
|
|
|
%% ================================================================================================= |
|
|
|
%% S.1 |
|
|
|
clear |
|
|
|
clear all |
|
|
|
|
|
|
|
datasetMedians = zeros(8); |
|
|
|
datasetFactors = zeros(8); |
|
|
@ -84,15 +84,17 @@ for fileIndex=1:8 |
|
|
|
[minValue, closestIndex] = min(abs(numberOfSpikesTrimmed-Dataset.spikeNum)); |
|
|
|
datasetFactors(fileIndex) = thresholdFactorInitValue + (closestIndex - 1) * thresholdFactorStep; |
|
|
|
|
|
|
|
clear {dataset, data} |
|
|
|
clear dataset |
|
|
|
clear data |
|
|
|
end |
|
|
|
fprintf('\n'); |
|
|
|
|
|
|
|
%% Q.1.3 |
|
|
|
figure(); |
|
|
|
plot(datasetMedians, datasetFactors, 'o'); |
|
|
|
title('Polynomial curve fitting on median-threshold factor value pairs'); |
|
|
|
xlabel('Dataset median'); |
|
|
|
ylabel('Threshold factor'); |
|
|
|
plot(datasetMedians, datasetFactors, 'o'); |
|
|
|
hold on; |
|
|
|
empiricalRule = polyfit(datasetMedians, datasetFactors, 8); |
|
|
|
visualizationX = linspace(0, 0.5, 50); |
|
|
@ -102,9 +104,11 @@ hold off |
|
|
|
|
|
|
|
%% ================================================================================================= |
|
|
|
%% S.2 |
|
|
|
clearvars closestIndex datasetFactors datasetMedians endValue minValue numberOfFactors ... |
|
|
|
numberOfSpikesPerFactor numberOfSpikesTrimmed thresholdFactorEndValue thresholdFactorInitValue ... |
|
|
|
thresholdFactorStep visualizationX visualizationY |
|
|
|
clearvars = {'closestIndex' 'datasetFactors' 'datasetMedians' 'endValue' 'minValue' 'numberOfFactors' ... |
|
|
|
'numberOfSpikesPerFactor' 'numberOfSpikesTrimmed' 'thresholdFactorEndValue' 'thresholdFactorInitValue' ... |
|
|
|
'thresholdFactorStep' 'visualizationX' 'visualizationY'}; |
|
|
|
clear(clearvars{:}) |
|
|
|
clear clearvars |
|
|
|
|
|
|
|
for fileIndex=1:4 |
|
|
|
fprintf('Loading evaluation dataset no. %d \n', fileIndex); |
|
|
|