%% AUTHOR[1] : Apostolos Fanakis (8261) %% EMAIL[1] : apostolof@auth.gr %% AUTHOR[2] : Charalampos Papadiakos (8302) %% EMAIL[2] : charaldp@ece.auth.gr %% AUTHOR[3] : Hlektra Mitsi () %% EMAIL[3] : %% $DATE : 28-December-2018 12:45:00 $ %% $Revision : 1.00 $ %% DEVELOPED : 9.0.0.341360 (R2016a) %% FILENAME : spike_sorting.m %% %% ================================================================================================= %% S.1 clear all datasetMedians = zeros(8); datasetFactors = zeros(8); for fileIndex=1:8 fprintf('Loading test dataset no. %d\n', fileIndex); filename = sprintf('dataset\\Data_Test_%d.mat', fileIndex); Dataset = load(filename); data = double(Dataset.data); %% Q.1.1 figure(); plot(data(1:10000)); xlim([0, 10000]); title(['First 10000 samples of dataset #' num2str(fileIndex)]); xlabel('Sample #'); ylabel('Trivial Unit'); %TODO: Is this mVolts? drawnow; %% Q.1.2 dataMedian = median(abs(data)/0.6745); datasetMedians(fileIndex) = dataMedian; thresholdFactorInitValue = 2; % k starting value thresholdFactorEndValue = 14; % k ending value thresholdFactorStep = 0.01; % k jumping step numberOfFactors = length(thresholdFactorInitValue:thresholdFactorStep:thresholdFactorEndValue); numberOfSpikesPerFactor = zeros(numberOfFactors); parfor factorIteration=1:numberOfFactors % runs for each k % builds threshold thresholdFactor = thresholdFactorInitValue + (factorIteration - 1) * thresholdFactorStep; threshold = thresholdFactor * dataMedian; % calculates number of spikes sample = 1; while sample <= length(data) if data(sample) >= threshold % spike found numberOfSpikesPerFactor(factorIteration) = numberOfSpikesPerFactor(factorIteration) + 1; % skips cheking until values are below threshold again while sample <= length(data) sample = sample + 1; if (data(sample) <= threshold) break; end end end sample = sample + 1; end end figure(); % trims zeros numberOfSpikesTrimmed = numberOfSpikesPerFactor(1:find(numberOfSpikesPerFactor,1,'last')); endValue = thresholdFactorInitValue + thresholdFactorStep * (length(numberOfSpikesTrimmed) - 1); plot(thresholdFactorInitValue:thresholdFactorStep:endValue, numberOfSpikesTrimmed); title(['Number of spikes for different values of k for dataset #' num2str(fileIndex)]); xlabel('Threshold factor (k)'); ylabel('Number of spikes'); hold on; plot([thresholdFactorInitValue endValue], [Dataset.spikeNum, Dataset.spikeNum]); xlim([thresholdFactorInitValue endValue]); drawnow; hold off; % finds dataset's theshold factor k that produces the closest number of % spikes ot the ground truth [minValue, closestIndex] = min(abs(numberOfSpikesTrimmed-Dataset.spikeNum)); datasetFactors(fileIndex) = thresholdFactorInitValue + (closestIndex - 1) * thresholdFactorStep; clear dataset clear data end fprintf('\n'); %% Q.1.3 figure(); plot(datasetMedians, datasetFactors, 'o'); title('Polynomial curve fitting on median-threshold factor value pairs'); xlabel('Dataset median'); ylabel('Threshold factor'); hold on; empiricalRule = polyfit(datasetMedians, datasetFactors, 8); visualizationX = linspace(0, 0.5, 50); visualizationY = polyval(empiricalRule, visualizationX); plot(visualizationX, visualizationY); hold off %% ================================================================================================= %% S.2 clearvars = {'closestIndex' 'datasetFactors' 'datasetMedians' 'endValue' 'minValue' 'numberOfFactors' ... 'numberOfSpikesPerFactor' 'numberOfSpikesTrimmed' 'thresholdFactorEndValue' 'thresholdFactorInitValue' ... 'thresholdFactorStep' 'visualizationX' 'visualizationY'}; clear(clearvars{:}) clear clearvars for fileIndex=1:4 fprintf('Loading evaluation dataset no. %d \n', fileIndex); filename = sprintf('dataset\\Data_Eval_E_%d.mat', fileIndex); Dataset = load(filename); data = double(Dataset.data); %% Q.2.1 and Q.2.2 dataMedian = median(abs(data)/0.6745); factorEstimation = polyval(empiricalRule, dataMedian); threshold = factorEstimation * dataMedian; numberOfSpikes = 0; spikesTimesEst(2500) = 0; spikesEst(2500, 64) = 0; % calculates number of spikes spikeStartIndex = 1; spikeEndIndex = 1; sample = 1; while sample <= length(data) if data(sample) >= threshold % spike found numberOfSpikes = numberOfSpikes + 1; % skips cheking until values are below threshold again while sample <= length(data) sample = sample + 1; if (data(sample) <= threshold) spikeEndIndex = sample; [~, minIndex] = min(data(spikeStartIndex:spikeEndIndex)); [~, maxIndex] = max(data(spikeStartIndex:spikeEndIndex)); firstIndex = min([minIndex maxIndex]); % Q.2.1 spikesTimesEst(numberOfSpikes) = firstIndex; % Q.2.2 spikesEst(numberOfSpikes, :) = data(firstIndex-34:firstIndex+29); break; end end end sample = sample + 1; end fprintf('%d spikes found for dataset #%d\n', numberOfSpikes, fileIndex); fprintf('actial number of spikes = %d\n', length(Dataset.spikeTimes)); fprintf('diff = %d\n\n', abs(length(Dataset.spikeTimes) - numberOfSpikes)); figure(); hold on; for spike=1:numberOfSpikes plot(1:64, spikesEst(spike, :)); end drawnow; hold off; end