You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.9 KiB
166 lines
5.9 KiB
%% AUTHOR[1] : Apostolos Fanakis (8261)
|
|
%% EMAIL[1] : apostolof@auth.gr
|
|
%% AUTHOR[2] : Charalampos Papadiakos (8302)
|
|
%% EMAIL[2] : charaldp@ece.auth.gr
|
|
%% AUTHOR[3] : Hlektra Mitsi ()
|
|
%% EMAIL[3] :
|
|
%% $DATE : 28-December-2018 12:45:00 $
|
|
%% $Revision : 1.00 $
|
|
%% DEVELOPED : 9.0.0.341360 (R2016a)
|
|
%% FILENAME : spike_sorting.m
|
|
%%
|
|
%% =================================================================================================
|
|
%% S.1
|
|
datasetMedians = zeros(8);
|
|
datasetFactors = zeros(8);
|
|
|
|
for fileIndex=1:8
|
|
fprintf('Loading test dataset no. %d\n', fileIndex);
|
|
filename = sprintf('dataset\\Data_Test_%d.mat', fileIndex);
|
|
Dataset = load(filename);
|
|
data = double(Dataset.data);
|
|
|
|
%% Q.1.1
|
|
figure();
|
|
plot(data(1:10000));
|
|
xlim([0, 10000]);
|
|
title(['First 10000 samples of dataset #' num2str(fileIndex)]);
|
|
xlabel('Sample #');
|
|
ylabel('Trivial Unit'); %TODO: Is this mVolts?
|
|
drawnow;
|
|
|
|
%% Q.1.2
|
|
dataMedian = median(abs(data)/0.6745);
|
|
datasetMedians(fileIndex) = dataMedian;
|
|
|
|
thresholdFactorInitValue = 2; % k starting value
|
|
thresholdFactorEndValue = 14; % k ending value
|
|
thresholdFactorStep = 0.01; % k jumping step
|
|
numberOfFactors = length(thresholdFactorInitValue:thresholdFactorStep:thresholdFactorEndValue);
|
|
numberOfSpikesPerFactor = zeros(numberOfFactors);
|
|
|
|
parfor factorIteration=1:numberOfFactors % runs for each k
|
|
% builds threshold
|
|
thresholdFactor = thresholdFactorInitValue + (factorIteration - 1) * thresholdFactorStep;
|
|
threshold = thresholdFactor * dataMedian;
|
|
|
|
% calculates number of spikes
|
|
sample = 1;
|
|
while sample <= length(data)
|
|
if data(sample) >= threshold
|
|
% spike found
|
|
numberOfSpikesPerFactor(factorIteration) = numberOfSpikesPerFactor(factorIteration) + 1;
|
|
|
|
% skips cheking until values are below threshold again
|
|
while sample <= length(data)
|
|
sample = sample + 1;
|
|
if (data(sample) <= threshold)
|
|
break;
|
|
end
|
|
end
|
|
end
|
|
sample = sample + 1;
|
|
end
|
|
end
|
|
|
|
figure();
|
|
% trims zeros
|
|
numberOfSpikesTrimmed = numberOfSpikesPerFactor(1:find(numberOfSpikesPerFactor,1,'last'));
|
|
endValue = thresholdFactorInitValue + thresholdFactorStep * (length(numberOfSpikesTrimmed) - 1);
|
|
plot(thresholdFactorInitValue:thresholdFactorStep:endValue, numberOfSpikesTrimmed);
|
|
title(['Number of spikes for different values of k for dataset #' num2str(fileIndex)]);
|
|
xlabel('Threshold factor (k)');
|
|
ylabel('Number of spikes');
|
|
hold on;
|
|
plot([thresholdFactorInitValue endValue], [Dataset.spikeNum, Dataset.spikeNum]);
|
|
xlim([thresholdFactorInitValue endValue]);
|
|
drawnow;
|
|
hold off;
|
|
|
|
% finds dataset's theshold factor k that produces the closest number of
|
|
% spikes ot the ground truth
|
|
[minValue, closestIndex] = min(abs(numberOfSpikesTrimmed-Dataset.spikeNum));
|
|
datasetFactors(fileIndex) = thresholdFactorInitValue + (closestIndex - 1) * thresholdFactorStep;
|
|
|
|
clear dataset
|
|
clear data
|
|
end
|
|
fprintf('\n');
|
|
|
|
%% Q.1.3
|
|
figure();
|
|
plot(datasetMedians, datasetFactors, 'o');
|
|
title('Polynomial curve fitting on median-threshold factor value pairs');
|
|
xlabel('Dataset median');
|
|
ylabel('Threshold factor');
|
|
hold on;
|
|
empiricalRule = polyfit(datasetMedians, datasetFactors, 8);
|
|
visualizationX = linspace(0, 0.5, 50);
|
|
visualizationY = polyval(empiricalRule, visualizationX);
|
|
plot(visualizationX, visualizationY);
|
|
hold off
|
|
|
|
%% =================================================================================================
|
|
%% S.2
|
|
clearvars = {'closestIndex' 'datasetFactors' 'datasetMedians' 'endValue' 'minValue' 'numberOfFactors' ...
|
|
'numberOfSpikesPerFactor' 'numberOfSpikesTrimmed' 'thresholdFactorEndValue' 'thresholdFactorInitValue' ...
|
|
'thresholdFactorStep' 'visualizationX' 'visualizationY'};
|
|
clear(clearvars{:})
|
|
clear clearvars
|
|
|
|
for fileIndex=1:4
|
|
fprintf('Loading evaluation dataset no. %d \n', fileIndex);
|
|
filename = sprintf('dataset\\Data_Eval_E_%d.mat', fileIndex);
|
|
Dataset = load(filename);
|
|
data = double(Dataset.data);
|
|
|
|
%% Q.2.1 and Q.2.2
|
|
dataMedian = median(abs(data)/0.6745);
|
|
|
|
factorEstimation = polyval(empiricalRule, dataMedian);
|
|
threshold = factorEstimation * dataMedian;
|
|
numberOfSpikes = 0;
|
|
spikesTimesEst(2500) = 0;
|
|
spikesEst(2500, 64) = 0;
|
|
|
|
% calculates number of spikes
|
|
spikeStartIndex = 1;
|
|
spikeEndIndex = 1;
|
|
sample = 1;
|
|
while sample <= length(data)
|
|
if data(sample) >= threshold
|
|
% spike found
|
|
numberOfSpikes = numberOfSpikes + 1;
|
|
spikeStartIndex = sample;
|
|
|
|
% skips cheking until values are below threshold again
|
|
while sample <= length(data)
|
|
sample = sample + 1;
|
|
if (data(sample) <= threshold)
|
|
spikeEndIndex = sample;
|
|
[~, minIndex] = min(data(spikeStartIndex:spikeEndIndex));
|
|
[~, maxIndex] = max(data(spikeStartIndex:spikeEndIndex));
|
|
firstIndex = min([minIndex maxIndex]);
|
|
% Q.2.1
|
|
spikesTimesEst(numberOfSpikes) = firstIndex;
|
|
% Q.2.2
|
|
spikesEst(numberOfSpikes, :) = data(spikeStartIndex-1+firstIndex-34:spikeStartIndex-1+firstIndex+29);
|
|
break;
|
|
end
|
|
end
|
|
end
|
|
sample = sample + 1;
|
|
end
|
|
|
|
fprintf('%d spikes found for dataset #%d\n', numberOfSpikes, fileIndex);
|
|
fprintf('actual number of spikes = %d\n', length(Dataset.spikeTimes));
|
|
fprintf('diff = %d\n\n', abs(length(Dataset.spikeTimes) - numberOfSpikes));
|
|
|
|
figure();
|
|
hold on;
|
|
for spike=1:numberOfSpikes
|
|
plot(1:64, spikesEst(spike, :));
|
|
end
|
|
drawnow;
|
|
hold off;
|
|
end
|
|
|