You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

340 lines
13 KiB

%% AUTHOR[1] : Apostolos Fanakis (8261)
%% EMAIL[1] : apostolof@auth.gr
%% AUTHOR[2] : Charalampos Papadiakos (8302)
%% EMAIL[2] : charaldp@ece.auth.gr
%% AUTHOR[3] : Hlektra Mitsi ()
%% EMAIL[3] :
%% $DATE : 28-December-2018 12:45:00 $
%% $Revision : 1.00 $
%% DEVELOPED : 9.0.0.341360 (R2016a)
%% FILENAME : spike_sorting.m
%%
%% =================================================================================================
%% S.1
datasetMedians(8) = 0;
datasetFactors(8) = 0;
thresholdFactorInitValue = 3; % k starting value
thresholdFactorEndValue = 12; % k ending value
thresholdFactorStep = 0.01; % k jumping step
numberOfFactors = length(thresholdFactorInitValue:thresholdFactorStep:thresholdFactorEndValue);
numberOfSpikesPerFactor(numberOfFactors) = 0;
for fileIndex=1:8
fprintf('Loading test dataset no. %d\n', fileIndex);
filename = sprintf('dataset\\Data_Test_%d.mat', fileIndex);
Dataset = load(filename);
data = double(Dataset.data);
%% Q.1.1
figure();
plot(data(1:10000));
xlim([0, 10000]);
title(['First 10000 samples of dataset #' num2str(fileIndex)]);
xlabel('Sample #');
ylabel('Trivial Unit'); %TODO: Is this mVolts?
drawnow;
%% Q.1.2
dataMedian = median(abs(data)/0.6745);
datasetMedians(fileIndex) = dataMedian;
for factorIteration=1:numberOfFactors % runs for each k
% builds threshold
thresholdFactor = thresholdFactorInitValue + (factorIteration - 1) * thresholdFactorStep;
threshold = thresholdFactor * dataMedian;
% calculates number of spikes
sample = 1;
while sample <= length(data)
if data(sample) >= threshold
% spike found
numberOfSpikesPerFactor(factorIteration) = numberOfSpikesPerFactor(factorIteration) + 1;
% skips cheking until values are below threshold again
while sample <= length(data)
sample = sample + 1;
if (data(sample) <= threshold)
break;
end
end
end
sample = sample + 1;
end
end
figure();
% trims zeros
numberOfSpikesTrimmed = numberOfSpikesPerFactor(1:find(numberOfSpikesPerFactor,1,'last'));
endValue = thresholdFactorInitValue + thresholdFactorStep * (length(numberOfSpikesTrimmed) - 1);
plot(thresholdFactorInitValue:thresholdFactorStep:endValue, numberOfSpikesTrimmed);
title(['Number of spikes for different values of k for dataset #' num2str(fileIndex)]);
xlabel('Threshold factor (k)');
ylabel('Number of spikes');
hold on;
plot([thresholdFactorInitValue endValue], [double(Dataset.spikeNum), double(Dataset.spikeNum)]);
xlim([thresholdFactorInitValue endValue]);
drawnow;
hold off;
% finds dataset's theshold factor k that produces the closest number of
% spikes ot the ground truth
[minValue, closestIndex] = min(abs(numberOfSpikesTrimmed-Dataset.spikeNum));
datasetFactors(fileIndex) = thresholdFactorInitValue + (closestIndex - 1) * thresholdFactorStep;
clear Dataset
clear data
end
fprintf('\n');
%% Q.1.3
figure();
plot(datasetMedians, datasetFactors, 'o');
title('Polynomial curve fitting on median-threshold factor value pairs');
xlabel('Dataset median');
ylabel('Threshold factor');
hold on;
empiricalRule = polyfit(datasetMedians, datasetFactors, 8);
visualizationX = linspace(0, 0.5, 50);
visualizationY = polyval(empiricalRule, visualizationX);
plot(visualizationX, visualizationY);
hold off
%% =================================================================================================
%% S.2
clearvars = {'closestIndex' 'datasetFactors' 'datasetMedians' 'endValue' 'minValue' ...
'numberOfFactors' 'numberOfSpikesPerFactor' 'numberOfSpikesTrimmed' 'thresholdFactorEndValue' ...
'thresholdFactorInitValue' 'thresholdFactorStep' 'visualizationX' 'visualizationY'};
clear(clearvars{:})
clear clearvars
for fileIndex=1:4
fprintf('Loading evaluation dataset no. %d \n', fileIndex);
filename = sprintf('dataset\\Data_Eval_E_%d.mat', fileIndex);
Dataset = load(filename);
data = double(Dataset.data);
%% Q.2.1 and Q.2.2
dataMedian = median(abs(data)/0.6745);
%factorEstimation = polyval(empiricalRule, dataMedian);
factorEstimation = 4;
threshold = factorEstimation * dataMedian;
numberOfSpikes = 0;
spikesTimesEst(2500) = 0;
spikesEst(2500, 64) = 0;
figure();
plot(data(1:10000));
xlim([0, 10000]);
title(['First 10000 samples of dataset #' num2str(fileIndex)]);
xlabel('Sample #');
ylabel('Trivial Unit'); %TODO: Is this mVolts?
hold on;
plot([1 10000], [threshold, threshold]);
drawnow;
% calculates number of spikes
spikeStartIndex = 1;
spikeEndIndex = 1;
sample = 1;
while sample <= length(data)
if data(sample) >= threshold
% spike found
numberOfSpikes = numberOfSpikes + 1;
spikeStartIndex = sample;
% skips cheking until values are below threshold again
while sample <= length(data)
sample = sample + 1;
if (data(sample) <= threshold)
% finds the index of the max sample for this spike
spikeEndIndex = sample;
[~, relativeMaxIndex] = max(data(spikeStartIndex:spikeEndIndex));
absoluteMaxIndex = spikeStartIndex - 1 + relativeMaxIndex;
% defines an area of -41/+22 samples around the max
% and searches for the min
[~, relativeMinIndex] = min(data(absoluteMaxIndex-41:absoluteMaxIndex+22));
absoluteMinIndex = absoluteMaxIndex - 41 + relativeMinIndex;
% discernes the extrema (minimum or maximum) that
% occurs first
firstIndex = min([absoluteMaxIndex absoluteMinIndex]);
% Q.2.1
spikesTimesEst(numberOfSpikes) = firstIndex;
% Q.2.2
spikesEst(numberOfSpikes, :) = data(firstIndex-34:firstIndex+29);
break;
end
end
end
sample = sample + 1;
end
fprintf('%d spikes found for dataset #%d\n', numberOfSpikes, fileIndex);
fprintf('actual number of spikes = %d\n', length(Dataset.spikeTimes));
fprintf('diff = %d\n\n', numberOfSpikes - length(Dataset.spikeTimes));
figure();
hold on;
for spike=1:numberOfSpikes
plot(1:64, spikesEst(spike, :));
end
title(['Spikes of dataset #' num2str(fileIndex) ' aligned at the first extrema']);
xlabel('Samples');
ylabel('Trivial Unit');
drawnow;
hold off;
%% Q.2.3
realSpikeIndex = double(Dataset.spikeTimes);
numberOfCorrectEstimations = 0;
numberOfUndetectedSpikes = 0;
averageEstimationError = 0;
correctSpikes(2500, 64) = 0;
spikeClass(2500) = 0;
for trueSpikeIndex=1:length(realSpikeIndex)
[estimationError, closestIndex] = min(abs(spikesTimesEst-realSpikeIndex(trueSpikeIndex)));
if estimationError < 32
numberOfCorrectEstimations = numberOfCorrectEstimations + 1;
averageEstimationError = averageEstimationError + estimationError;
correctSpikes(numberOfCorrectEstimations, :) = spikesEst(closestIndex, :);
spikeClass(numberOfCorrectEstimations) = double(Dataset.spikeClass(trueSpikeIndex));
else
numberOfUndetectedSpikes = numberOfUndetectedSpikes + 1;
end
end
averageEstimationError = averageEstimationError / numberOfSpikes;
fprintf('Number of correct spike detections is %d\n', numberOfCorrectEstimations);
if numberOfSpikes-numberOfCorrectEstimations > 0
fprintf('Number of uncorrect spike detections is %d\n', ...
numberOfSpikes - numberOfCorrectEstimations);
end
fprintf('Number of undetected spikes is %d\n', numberOfUndetectedSpikes);
fprintf('Average error of spike index estimation is %.2f\n\n', averageEstimationError);
%% Q.2.4
features(numberOfCorrectEstimations, 7) = 0;
pcaCoefficients = pca(correctSpikes, 'NumComponents', 2);
for spike=1:numberOfCorrectEstimations
% finds index of max
[maxVal, features(spike, 1)] = max(correctSpikes(spike, :));
% calculates Vpeak-to-peak
features(spike, 2) = maxVal - min(correctSpikes(spike, :));
% calculates ZCR
features(spike, 3) = mean(abs(diff(sign(correctSpikes(spike, :)))));
% calculates the signal energy
features(spike, 4) = sum(correctSpikes(spike, :).^2);
% calculates the fft of the signal
asud = fft(correctSpikes(spike, :));
features(spike, 5) = asud(1)^2;
features(spike, 6) = correctSpikes(spike, :) * pcaCoefficients(:, 1);
features(spike, 7) = correctSpikes(spike, :) * pcaCoefficients(:, 2);
end
figure();
scatter(features(:, 1), features(:, 2));
title(['Dataset #' num2str(fileIndex) ' feature plot']);
xlabel('Index of max value');
ylabel('Peak-to-peak amplitude');
figure();
scatter(features(:, 6), features(:, 7));
title(['Dataset #' num2str(fileIndex) ' feature plot']);
xlabel('PCA feature 1');
ylabel('PCA feature 2');
%% Q.2.5
accuracy = MyClassify(features, spikeClass');
fprintf('Accuracy achieved is %.2f%%\n\n', accuracy);
% clustering using DB-SCAN algorithm
% code for DB-SCAN downloaded from here:
% https://www.peterkovesi.com/matlabfns/
if fileIndex == 1
distThreshold = 0.4;
minPts = 20;
elseif fileIndex == 2
distThreshold = 0.15;
minPts = 30;
elseif fileIndex == 3
distThreshold = 0.32;
minPts = 30;
else
distThreshold = 0.36;
minPts = 35;
end
[~, dbScanClasses, ~] = dbscan(features(:, 6:7)', distThreshold, minPts);
% fixes classes enumeration
dbScanClasses(dbScanClasses==1) = 7;
dbScanClasses(dbScanClasses==3) = 1;
dbScanClasses(dbScanClasses==7) = 3;
figure();
scatter(features(dbScanClasses == 0, 6), features(dbScanClasses == 0, 7), [], 'k', 'o');
hold on;
scatter(features(dbScanClasses == 1, 6), features(dbScanClasses == 1, 7), [], 'b', '*');
scatter(features(dbScanClasses == 2, 6), features(dbScanClasses == 2, 7), [], 'r', '*');
scatter(features(dbScanClasses == 3, 6), features(dbScanClasses == 3, 7), [], 'g', '*');
title(['Dataset #' num2str(fileIndex) ' feature plot after clustering with DB-SCAN']);
xlabel('PCA feature 1');
ylabel('PCA feature 2');
accuracy = classperf(spikeClass',dbScanClasses);
fprintf('Accuracy achieved with DB-SCAN is %.2f%%\n\n', accuracy.CorrectRate*100);
% hierarchical clustering
distances = pdist(features(:, 6:7));
linkages = linkage(distances, 'ward');
hierarchicalClusters = cluster(linkages, 'maxclust', 3);
% fixes classes enumeration
hierarchicalClusters(hierarchicalClusters==1) = 7;
hierarchicalClusters(hierarchicalClusters==2) = 1;
hierarchicalClusters(hierarchicalClusters==7) = 2;
figure();
scatter(features(hierarchicalClusters == 0, 6), features(hierarchicalClusters == 0, 7), [], 'k', 'o');
hold on;
scatter(features(hierarchicalClusters == 2, 6), features(hierarchicalClusters == 2, 7), [], 'r', '*');
scatter(features(hierarchicalClusters == 3, 6), features(hierarchicalClusters == 3, 7), [], 'g', '*');
scatter(features(hierarchicalClusters == 1, 6), features(hierarchicalClusters == 1, 7), [], 'b', '*');
title(['Dataset #' num2str(fileIndex) ' feature plot after clustering with hierarchical clustering']);
xlabel('PCA feature 1');
ylabel('PCA feature 2');
accuracy = classperf(spikeClass',hierarchicalClusters);
fprintf('Accuracy achieved with hierarchical clustering is %.2f%%\n\n', accuracy.CorrectRate*100);
% clustering using kmeans algorithm
rng(1); % For reproducibility
kMeansClasses = kmeans(features(:, 6:7), 3);
% fixes classes enumeration
kMeansClasses(kMeansClasses==2) = 7;
kMeansClasses(kMeansClasses==3) = 2;
kMeansClasses(kMeansClasses==7) = 3;
figure();
scatter(features(kMeansClasses == 1, 6), features(kMeansClasses == 1, 7), [], 'b', '*');
hold on;
scatter(features(kMeansClasses == 2, 6), features(kMeansClasses == 2, 7), [], 'r', '*');
scatter(features(kMeansClasses == 3, 6), features(kMeansClasses == 3, 7), [], 'g', '*');
title(['Dataset #' num2str(fileIndex) ' feature plot after clustering with K-Means']);
xlabel('PCA feature 1');
ylabel('PCA feature 2');
accuracy = classperf(spikeClass',kMeansClasses);
fprintf('Accuracy achieved with K-Means is %.2f%%\n\n', accuracy.CorrectRate*100);
clearvars = {'spikesTimesEst', 'spikesEst', 'data', 'features', 'realSpikeIndex', ...
'correctSpikes', 'spikeClass', 'Data', 'Dataset', 'pcaCoefficients', 'accuracy', 'asud', ...
'dbScanClasses', 'kMeansClasses'};
clear(clearvars{:})
clear clearvars
end