You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
21 lines
745 B
21 lines
745 B
6 years ago
|
#LinearRegression]
|
||
|
|
||
|
#Import Library
|
||
|
#Import other necessary libraries like pandas, numpy...
|
||
|
from sklearn import linear_model
|
||
|
#Load Train and Test datasets
|
||
|
#Identify feature and response variable(s) and values must be numeric and numpy arrays
|
||
|
x_train=input_variables_values_training_datasets
|
||
|
y_train=target_variables_values_training_datasets
|
||
|
x_test=input_variables_values_test_datasets
|
||
|
# Create linear regression object
|
||
|
linear = linear_model.LinearRegression()
|
||
|
# Train the model using the training sets and check score
|
||
|
linear.fit(x_train, y_train)
|
||
|
linear.score(x_train, y_train)
|
||
|
#Equation coefficient and Intercept
|
||
|
print('Coefficient: \n', linear.coef_)
|
||
|
print('Intercept: \n', linear.intercept_)
|
||
|
#Predict Output
|
||
|
predicted= linear.predict(x_test)
|