import numpy as np import pandas as pd from feature_extraction.batch_feature_extractor import batchExtract from preprocessing.data_preprocessing import standardization from training.model_training import simpleTrain musicFeatures = batchExtract('../dataset/music_wav/', '../feature_extraction/music_features/', 22050) musicFeatures = musicFeatures.assign(target=0) speechFeatures = batchExtract('../dataset/speech_wav/', '../feature_extraction/speech_features/', 22050) speechFeatures = speechFeatures.assign(target=1) dataset = pd.concat([musicFeatures, speechFeatures]) target = dataset.pop('target').values dataset = pd.DataFrame(standardization(dataset), columns = dataset.columns.values) wholeAccuracy = simpleTrain(dataset, target, 'svm') print('Accuracy using whole dataset = ' + str(wholeAccuracy)) damages = np.zeros(dataset.columns.values.size) for index, key in enumerate(dataset.columns.values): acc = simpleTrain(dataset.drop(key, axis=1), target, 'svm') damages[index] = 100*(wholeAccuracy-acc) print('Accuracy without ' + key + '\t= ' + str(acc) + ',\tdamage\t= ' + "%.2f" % damages[index] + '%')