import numpy as np from feature_extraction.feature_extractor import extractFeatures from feature_extraction.batch_feature_extractor import batchExtract from preprocessing.data_preprocessing import arrayFromJSON, createSingleFeaturesArray, standardization, PCA from training.model_training import simpleTrain, kFCrossValid batchExtract('../dataset/music_wav/', 'feature_extraction/music_features/', 22050) batchExtract('../dataset/speech_wav/', 'feature_extraction/speech_features/', 22050) dataset, target, featureKeys = createSingleFeaturesArray( 'feature_extraction/music_features/', 'feature_extraction/speech_features/') dataset = standardization(dataset) # dataset = PCA(dataset) print('Simple train accuracy achieved = ' + str(simpleTrain(dataset, target))) kFCrossValid(dataset, target, model = 'svm') clf = kFCrossValid(dataset, target, model = 'rndForest') extractFeatures('compined.wav', 'featuresStream/tmp.json', 22050) values = arrayFromJSON('featuresStream/tmp.json')[1] values = standardization(values) audioClass = clf.predict(values) print(audioClass)