You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
3.3 KiB
98 lines
3.3 KiB
from os import listdir
|
|
from os.path import isfile, join
|
|
import numpy as np
|
|
import pandas as pd
|
|
import json
|
|
|
|
class bcolors:
|
|
BLUE = '\033[94m'
|
|
GREEN = '\033[92m'
|
|
YELLOW = '\033[93m'
|
|
RED = '\033[91m'
|
|
ENDC = '\033[0m'
|
|
|
|
def arrayFromJSON(JSONPath):
|
|
with open(JSONPath) as jsonFile:
|
|
rawJSON = json.load(jsonFile)
|
|
|
|
keys = np.array([])
|
|
values = np.array([])
|
|
for featureKey, featureValues in rawJSON.items():
|
|
if keys.size == 0 or values.size == 0:
|
|
keys = np.array(featureKey)
|
|
values = np.array(featureValues)
|
|
else:
|
|
keys = np.append(keys, (np.array(featureKey)))
|
|
values = np.vstack((values, np.array(featureValues)))
|
|
|
|
values = np.transpose(values)
|
|
return keys, values
|
|
|
|
def createSingleFeaturesArray(musicJSONsPath, speechJSONsPath):
|
|
print(bcolors.YELLOW + 'Creating single features array' + bcolors.ENDC)
|
|
dataset = np.array([])
|
|
featureKeys = np.array([])
|
|
|
|
# Reads the extracted features for the music class
|
|
featuresFiles = [file for file in listdir(musicJSONsPath) if isfile(join(musicJSONsPath, file))]
|
|
for file in featuresFiles:
|
|
if dataset.size == 0:
|
|
# Gets feature arrays
|
|
featureKeys, musicFeatures = arrayFromJSON(musicJSONsPath + file)
|
|
# Initializes dataset array
|
|
dataset = np.copy(musicFeatures)
|
|
else:
|
|
# Gets feature arrays
|
|
musicFeatures = arrayFromJSON(musicJSONsPath + file)[1]
|
|
dataset = np.vstack((dataset, musicFeatures))
|
|
|
|
# Initializes target array (0 for music)
|
|
target = np.zeros((dataset.shape[0]), dtype=int)
|
|
|
|
# Reads the extracted features for the speech class
|
|
featuresFiles = [file for file in listdir(speechJSONsPath) if isfile(join(speechJSONsPath, file))]
|
|
for file in featuresFiles:
|
|
# Gets feature arrays
|
|
speechFeatures = arrayFromJSON(speechJSONsPath + file)[1]
|
|
dataset = np.vstack((dataset, speechFeatures))
|
|
|
|
# Appends the new class to the target array (1 for speech)
|
|
target = np.hstack((target, np.ones((dataset.shape[0] - target.size), dtype=int)))
|
|
|
|
return dataset, target, featureKeys
|
|
|
|
# Details about this part can be found in the link bellow:
|
|
# https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
|
|
def standardization(dataset):
|
|
from sklearn import preprocessing
|
|
|
|
print(bcolors.YELLOW + 'Running standardization' + bcolors.ENDC)
|
|
# Standardization
|
|
scaledDataset = preprocessing.scale(np.float64(dataset))
|
|
|
|
return scaledDataset
|
|
|
|
# Details about this part can be found in the link bellow:
|
|
# https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
|
|
def PCA(dataset):
|
|
from sklearn.decomposition import PCA
|
|
|
|
print(bcolors.YELLOW + 'Running PCA' + bcolors.ENDC)
|
|
pca = PCA(n_components=10, svd_solver='full', whiten = True)
|
|
transformedDataset = pca.fit(dataset).transform(dataset)
|
|
|
|
return pca, transformedDataset
|
|
|
|
# Prints a nice message to let the user know the module was imported
|
|
print(bcolors.BLUE + 'feature_preprocessing loaded' + bcolors.ENDC)
|
|
|
|
# Enables executing the module as a standalone script
|
|
if __name__ == "__main__":
|
|
import sys
|
|
dataset, target, featureKeys = createSingleFeaturesArray(sys.argv[1], sys.argv[2])
|
|
scaledDataset = standardization(dataset)
|
|
|
|
print(bcolors.GREEN + 'Saving scaled results to file' + bcolors.ENDC)
|
|
datasetFrame = pd.DataFrame(scaledDataset, columns = featureKeys)
|
|
datasetFrame = datasetFrame.assign(target=target)
|
|
datasetFrame.to_pickle("./dataset.pkl")
|
|
|