Browse Source

Merge branch 'develop' into feature/5-conclusions-open-areas

develop
Ezerous 3 years ago
parent
commit
df0b748ccc
  1. 2
      .gitignore
  2. BIN
      assets/figures/chapter-3/3.8.implementation-methodology-specification-sprints.png
  3. BIN
      assets/figures/chapter-4/4-2-implementation-methodology-jenkins-pipeline.png
  4. BIN
      assets/figures/chapter-4/4.2.implementation-methodology-kanban.png
  5. BIN
      assets/figures/chapter-4/4.3.docker-logo.png
  6. BIN
      assets/figures/chapter-4/4.3.ganache-gui.png
  7. BIN
      assets/figures/chapter-4/4.3.ganache-logo.png
  8. BIN
      assets/figures/chapter-4/4.3.jenkins-logo.png
  9. BIN
      assets/figures/chapter-4/4.3.js-ipfs-logo.png
  10. BIN
      assets/figures/chapter-4/4.3.libp2p-logo.png
  11. BIN
      assets/figures/chapter-4/4.3.node.js-logo.png
  12. BIN
      assets/figures/chapter-4/4.3.react-logo.png
  13. BIN
      assets/figures/chapter-4/4.3.react-redux.png
  14. BIN
      assets/figures/chapter-4/4.3.redux-logo.png
  15. BIN
      assets/figures/chapter-4/4.3.redux-saga-logo.png
  16. BIN
      assets/figures/chapter-4/4.3.truffle-logo.png
  17. 5
      bibliography/references.bib
  18. 44
      chapters/3.application-design/3.8.implementation-methodology-specification.tex
  19. 3
      chapters/4.application-implementation/4.0.application-implementation.tex
  20. 61
      chapters/4.application-implementation/4.2.implementation-methodology.tex
  21. 12
      chapters/4.application-implementation/4.3.implementation-technology-stack.tex
  22. 9
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies.tex
  23. 9
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.1.node.js.tex
  24. 15
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.2.docker.tex
  25. 14
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.3.jenkins.tex
  26. 5
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.ui-technologies.tex
  27. 5
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ethereum-technologies.tex
  28. 9
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies.tex
  29. 11
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.1.react.tex
  30. 27
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.2.redux.tex
  31. 7
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.3.redux-saga.tex
  32. 6
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies.tex
  33. 11
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies/4.3.3.1.truffle.tex
  34. 21
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies/4.3.3.2.ganache.tex
  35. 5
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ipfs-technologies.tex
  36. 5
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.development-technologies.tex
  37. 7
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies.tex
  38. 7
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.1.js-ipfs.tex
  39. 4
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.2.orbit-db.tex
  40. 9
      chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.3.libp2p.tex
  41. 1
      chapters/4.application-implementation/4.5.problems-faced.tex
  42. 1
      chapters/4.application-implementation/4.6.design-implementation-differences.tex
  43. 2
      chapters/5.conclusions-open-areas/5.2.open-areas.tex
  44. BIN
      thesis.pdf

2
.gitignore

@ -281,3 +281,5 @@ TSWLatexianTemp*
output output
Makefile Makefile
.idea .idea
*.sublime-project
*.sublime-workspace

BIN
assets/figures/chapter-3/3.8.implementation-methodology-specification-sprints.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 639 KiB

BIN
assets/figures/chapter-4/4-2-implementation-methodology-jenkins-pipeline.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 702 KiB

BIN
assets/figures/chapter-4/4.2.implementation-methodology-kanban.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 168 KiB

BIN
assets/figures/chapter-4/4.3.docker-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

BIN
assets/figures/chapter-4/4.3.ganache-gui.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

BIN
assets/figures/chapter-4/4.3.ganache-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

BIN
assets/figures/chapter-4/4.3.jenkins-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

BIN
assets/figures/chapter-4/4.3.js-ipfs-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 689 KiB

BIN
assets/figures/chapter-4/4.3.libp2p-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

BIN
assets/figures/chapter-4/4.3.node.js-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

BIN
assets/figures/chapter-4/4.3.react-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

BIN
assets/figures/chapter-4/4.3.react-redux.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

BIN
assets/figures/chapter-4/4.3.redux-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

BIN
assets/figures/chapter-4/4.3.redux-saga-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

BIN
assets/figures/chapter-4/4.3.truffle-logo.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

5
bibliography/references.bib

@ -105,6 +105,11 @@
author = {GitHub Guides}, author = {GitHub Guides},
url = {https://guides.github.com/introduction/flow/} url = {https://guides.github.com/introduction/flow/}
} }
@misc{4.3-node.js,
title = {Node.js},
author = {Wikipedia},
url = {https://en.wikipedia.org/wiki/Node.js}
}
@misc{4.3-orbitdb, @misc{4.3-orbitdb,
title = {OrbitDB}, title = {OrbitDB},
url = {https://orbitdb.org} url = {https://orbitdb.org}

44
chapters/3.application-design/3.8.implementation-methodology-specification.tex

@ -1,40 +1,18 @@
\section{Προδιαγραφή μεθόδου υλοποίησης και χρονοπρογραμματισμός} \label{section:3-8-implementation-methodology-specification} \section{Προδιαγραφή μεθόδου υλοποίησης και χρονοπρογραμματισμός} \label{section:3-8-implementation-methodology-specification}
% TODO: remove feeless and reputation from cycles, add communities Κατά τον χρονοπρογραμματισμό ακολουθήθηκαν οι τακτικές που ορίζει το Scrum. Το συνολικό προγραμματιστικό έργο χωρίστηκε σε επιμέρους, διακριτούς στόχους και κάθε στόχος αντιστοιχήθηκε σε ένα Sprint. Τα Sprints αποτελούνται από επιμέρους διαχωρισμό της εργασίας σε epic tasks. Σε αυτό το στάδιο χρονοπρογραμματισμού δεν έγινε αναλυτικότερη περιγραφή των επιμέρους tasks, κάθε epic χωρίστηκε σε tasks κατά το αρχικό στάδιο της υλοποίησης του.
\subsection{Προδιαγραφή κύκλων} Ως σημαντικότερος στόχος της ανάπτυξης ορίζεται η δημιουργία ενός ελάχιστου βιώσιμου προϊόντος (Minumum Viable Product - MVP). Σε αυτό τον στόχο περιλαμβάνονται πιο στοιχειώδεις λειτουργίες μίας πλατφόρμας επικοινωνίας οι οποίες την κάνουν χρήσιμη, η δυνατότητα εγγραφής, δημιουργίας θεμάτων και μηνυμάτων και ανάγνωσης του υπάρχοντος περιεχομένου. Επειδή ο στόχος αυτός περιέχει από μόνος του σημαντική περιπλοκότητα και δυσκολία κρίθηκε αναγκαίος ο περαιτέρω διαχωρισμός του σε τρία Sprints.
Εποπτικά, η διαδικασία της υλοποίησης περιγράφεται ως εξής: Στο πρώτο Sprint ορίστηκε ο στόχος της δημιουργίας μίας βάσης κώδικα (codebase), της εξοικείωσης με τα προγραμματιστικά εργαλεία του οικοσυστήματος των DApps και της επιτυχής δημιουργίας του πρώτου contract. Στο δεύτερο Sprint ο στόχος ορίστηκε ως η δημιουργία των τεχνικών χαρακτηριστικών που αφορούν τους χρήστες της πλατφόρμας και που οι ίδιοι (οι χρήστες) έχουν συνηθίσει να περιμένουν από μία τέτοια πλατφόρμα. Στο τρίτο Sprint συμπεριλήφθηκαν τα τεχνικά χαρακτηριστικά που απομένουν ώστε να δημιουργηθεί το MVP.
% TODO: insert revamped diagram Τα επόμενα τρία Sprints χτίζουν διαδοχικά πάνω στην υπάρχουσα δουλειά και υποδομή. Στο τέταρτο μέρος εργασίας ως στόχος ορίστηκε η προσθήκη των χαρακτηριστικών ψηφοφορίας πάνω στα μηνύματα και δημιουργίας ψηφοφοριών θεμάτων (polls). Το επόμενο Sprint περιλαμβάνει εργασίες δημιουργίας υποδομής και την πρώτη ημι-δημόσια εγκατάσταση της εφαρμογής σε περιβάλλον δοκιμής. Το τελευταίο Sprint αποτελεί το τελικό προϊόν και περιέχει tasks σχετικά με την δημιουργία κοινοτήτων και την beta εγκατάσταση της εφαρμογής.
\subsection{Πρώτη φάση} Εποπτικά, η διαδικασία της υλοποίησης περιγράφεται στο παρακάτω σχήμα (σχήμα \ref{figure:3.8.implementation-methodology-specification-sprints}).
% Παλιό από Drive \begin{figure}[H]
Στήνεται ένα Ethereum Private Network ως βάση πάνω στην οποία θα δουλέψουμε. Πάνω σε αυτό γράφουμε τα contracts που θα είναι υπεύθυνα για διεκπεραίωση ή μη των posts. \centering
Στη συνέχεια αναπτύσσεται ο απαραίτητος κώδικας που υλοποιεί το posting χρησιμοποιώντας τις βιβλιοθήκες που δίνονται από το IPFS για την επικοινωνία μεταξύ των κόμβων του δικτύου και αυτές που δίνονται από τη BigChainDB για την αποθήκευση των πληροφοριών με διανεμημένο τρόπο. \includegraphics[width=.8\textwidth]{assets/figures/chapter-3/3.8.implementation-methodology-specification-sprints.png}
Γίνονται δοκιμές για την εξακρίβωση της σωστής λειτουργίας του αποτελέσματος και διορθώνονται τυχόν λάθη στο κώδικα. \caption{Διαχωρισμός σε sprints}
\label{figure:3.8.implementation-methodology-specification-sprints}
\subsection{Δεύτερη φάση} \end{figure}
% Παλιό από Drive
Υλοποιείται το δικαίωμα ψήφου και posting χωρίς fees. Αυτό γίνεται μέσω δύο contracts που θα δημιουργούν δύο διαφορετικά tokens (voting token, feeless token) και θα τα αποδίδουν στον εκάστοτε χρήστη που πρέπει να πάρει το δικαίωμα.
Αναπτύσσεται κώδικας που να υλοποιεί τη διαδικασία ψηφοφορίας.
Γίνονται δοκιμές για την εξακρίβωση της σωστής λειτουργίας του αποτελέσματος και διορθώνονται τυχόν λάθη στο κώδικα. Σε αυτή τη φάση η απόδοση των tokens θα γίνει χειροκίνητα για το σκοπό της δοκιμής.
\subsection{Τρίτη φάση}
% Παλιό από Drive
Υλοποιείται ένα σύστημα απόδοσης εμπιστοσύνης (ΣΑΠ).
Αναπτύσσονται τα contracts που είναι απαραίτητα για τη λειτουργία του ΣΑΠ καθώς και για την αυτόματη απόδοση feeless token στους trusted χρήστες.
Γίνονται δοκιμές για την εξακρίβωση της σωστής λειτουργίας του αποτελέσματος και διορθώνονται τυχόν λάθη στο κώδικα.
Εφόσον η εφαρμογή περάσει το στάδιο των δοκιμών είναι έτοιμη για alpha deployment, είναι δηλαδή έτοιμη για χρήση από το κοινό, υπολείπονται όμως χαρακτηριστικά που είναι ιδιαίτερα θεμιτά αλλά όχι απαραίτητα για τη λειτουργία.
\subsection{Τέταρτη φάση}
% Παλιό από Drive
Αναπτύσσεται ο κώδικας του (μοναδικού) συγκεντρωτικού τμήματος του συστήματος το οποίο ανήκει στο δεύτερο κομμάτι - του UAS: Έτσι αυτοματοποιείται η διαδικασία απόδοσης των token, που στην προηγούμενη φάση έγινε χειροκίνητα.
Γίνονται δοκιμές για την εξακρίβωση της σωστής λειτουργίας του αποτελέσματος και διορθώνονται τυχόν λάθη στο κώδικα.
Εφόσον η εφαρμογή περάσει το στάδιο των δοκιμών είναι έτοιμη για ένα beta deployment, ώστε να γίνει πιο ευρύς έλεγχος από μία ομάδα δοκιμών και να παρθεί feedback για την εμπειρία χρήστη.
Για το τελικό deployment θα μπορούσε να τεθεί ως στόχος η κατά το δυνατόν μείωση των τελών για τη λειτουργία της πλατφόρμας, ανεπτυγμένα χαρακτηριστικά επικοινωνίας όπως δόμηση των συζητήσεων σε κατηγορίες, προφίλ χρηστών και άλλα χαρακτηριστικά ευκολίας χρήσης.

3
chapters/4.application-implementation/4.0.application-implementation.tex

@ -4,6 +4,3 @@
\input{chapters/4.application-implementation/4.2.implementation-methodology} \input{chapters/4.application-implementation/4.2.implementation-methodology}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack} \input{chapters/4.application-implementation/4.3.implementation-technology-stack}
\input{chapters/4.application-implementation/4.4.implementation-architecture} \input{chapters/4.application-implementation/4.4.implementation-architecture}
%TODO: add \section{Προβλήματα ανάπτυξης}
%TODO: add \section{Διαφορές σχεδιασμού-υλοποίησης}

61
chapters/4.application-implementation/4.2.implementation-methodology.tex

@ -1,11 +1,60 @@
\section{Μεθοδολογία υλοποίησης} \section{Μεθοδολογία υλοποίησης} \label{subsection:4-2-implementation-methodology}
Για την επίτευξη των στόχων που ορίστηκαν και την οργάνωση της εργασίας που απαιτείται σε διαχειρίσιμα μέρη, σχεδιάστηκε η χρήση διάφορων εργαλείων και μεθόδων ανάπτυξης λογισμικού, όπως το σύστημα ελέγχου εκδόσεων (version control system) Git και η μέθοδος οργάνωσης Scrum. Τα εργαλεία αυτά είναι δοκιμασμένα και έχουν εδραιωθεί στη σύγχρονη ανάπτυξη λογισμικού. Για την επίτευξη των στόχων που ορίστηκαν και την οργάνωση της εργασίας που απαιτείται σε διαχειρίσιμα μέρη, σχεδιάστηκε η χρήση διάφορων εργαλείων και μεθόδων ανάπτυξης λογισμικού, όπως το σύστημα ελέγχου εκδόσεων (version control system) Git, η μέθοδος οργάνωσης Scrum και οι διαδικασίες ανάπτυξης DevOps. Τα εργαλεία αυτά είναι δοκιμασμένα και έχουν εδραιωθεί στη σύγχρονη ανάπτυξη λογισμικού.
Το Git είναι δωρεάν λογισμικό ανοιχτού κώδικα το οποίο επιτρέπει και επικουρεί την απρόσκοπτη ανάπτυξη λογισμικού από πολλαπλά μέλη μίας ομάδας, ταυτόχρονα και διανεμημένα. Αυτό επιτυγχάνεται παρέχοντας ένα πλαίσιο από εργαλεία τα οποία βοηθούν την διαχείριση και ενσωμάτωση των διαφορετικών εκδόσεων του κώδικα τις οποίες αναπτύσσει κάθε μέλος της ομάδας ξεχωριστά. Υπάρχουν διάφορα μοντέλα χρήσης του Git και πιο συγκεκριμένα της δυνατότητας που δίνει για δημιουργία, ανάπτυξη και ένωση κλαδιών (branches). Για τους σκοπούς της παρούσας διπλωματικής χρησιμοποιήθηκε το μοντέλο GitHub flow\cite{4.2-github-flow}. Το μοντέλο αυτό ορίζει ότι κάθε προγραμματιστής θα ανοίγει ένα νέο branch για τη ανάπτυξη ενός νέου χαρακτηριστικού της εφαρμογής ή τη διόρθωση ενός μέρους του κώδικα. Έπειτα, όταν η δουλειά έχει ολοκληρωθεί, το branch ενώνεται (merge) με το βασικό branch της εφαρμογής. Μέσα από την χρήση των παραπάνω εργαλείων επιτυγχάνεται η ομαλή συνεργασία στην ανάπτυξη του λογισμικού. Κάθε μέλος της ομάδας δύναται να εργαστεί ανεξάρτητα και χωρίς την ανάγκη διαρκούς επικοινωνίας με τα υπόλοιπα μέλη. Οι στόχοι είναι ορισμένοι, σαφείς και χωρισμένοι σε διαχειρίσιμα μέρη τα οποία δεν καταβάλουν τα μέλη. Ταυτόχρονα, έχοντας ως έδρα καθιερωμένα πρότυπα ανάπτυξης, παρέχεται φορμαλισμός και έτοιμες μέθοδοι επίλυσης προβλημάτων, γεγονός που λειτουργεί καταλυτικά και βοηθά στην αποφυγή τελμάτων κατά τη συγγραφή του κώδικα.
Το Scrum είναι μία μέθοδος οργάνωσης στην οποία ο επιμελητής του Scrum (Scrum master) διαχωρίζει τα ανεξάρτητα μέρη εργασίας (tasks) που πρέπει να υλοποιηθούν για την ολοκλήρωση των στόχων ενός project. Τα μέρη αυτά περιγράφονται αναλυτικά μαζί με τις απαιτήσεις τους και κατατίθενται σε μία λίστα εργασιών (backlog). Έπειτα, μέσα από συσκέψεις (meetings), επιλέγεται ένας αριθμός από μέρη εργασίας τα οποία θα αποτελέσουν το επόμενο Sprint. Κάθε μέρος εργασίας ανατίθεται σε κάποιο μέλος για υλοποίηση και ορίζεται για το Sprint μία χρονική διάρκεια, στόχος της οποίας είναι η περάτωση όλων των μερών εργασίας πριν τη λήξη της. Στο τέλος προθεσμίας που ορίστηκε για το Sprint τα μέλη της ομάδας αποτιμούν τα αποτελέσματα και ορίζουν το επόμενο Sprint. Η διαδικασία επαναλαμβάνεται έως ότου το έργο ολοκληρωθεί. Το Git είναι δωρεάν λογισμικό ανοιχτού κώδικα το οποίο επιτρέπει και επικουρεί την απρόσκοπτη ανάπτυξη λογισμικού από πολλαπλά μέλη μίας ομάδας, ταυτόχρονα και διανεμημένα. Αυτό επιτυγχάνεται παρέχοντας ένα πλαίσιο από εργαλεία τα οποία βοηθούν την διαχείριση και ενσωμάτωση των διαφορετικών εκδόσεων του κώδικα τις οποίες αναπτύσσει κάθε μέλος της ομάδας ξεχωριστά. Υπάρχουν διάφορα μοντέλα χρήσης του Git και πιο συγκεκριμένα της δυνατότητας που δίνει για δημιουργία, ανάπτυξη και ένωση (merge) κλαδιών (branches).
Μέσα από την χρήση των παραπάνω εργαλείων επιτυγχάνεται η ομαλή συνεργασία στην ανάπτυξη του λογισμικού. Κάθε μέλος της ομάδας δύναται να εργαστεί ανεξάρτητα και χωρίς την ανάγκη διαρκούς επικοινωνίας με τα υπόλοιπα μέλη. Οι στόχοι είναι ορισμένοι, σαφείς και χωρισμένοι σε διαχειρίσιμα μέρη τα οποία δεν καταβάλουν τα μέλη. Ταυτόχρονα, έχοντας ως έδρα καθιερωμένα πρότυπα ανάπτυξης, παρέχεται φορμαλισμός και έτοιμες μέθοδοι επίλυσης προβλημάτων, γεγονός που λειτουργεί καταλυτικά και βοηθά στην αποφυγή τελμάτων κατά τη συγγραφή του κώδικα. Για τους σκοπούς της παρούσας διπλωματικής χρησιμοποιήθηκε το μοντέλο GitHub flow\cite{4.2-github-flow}. Το μοντέλο αυτό ορίζει ότι κάθε προγραμματιστής ανοίγει ένα νέο branch για τη ανάπτυξη ενός χαρακτηριστικού της εφαρμογής ή τη διόρθωση ενός μέρους του κώδικα. Έπειτα, όταν η δουλειά έχει ολοκληρωθεί, δημιουργείται ένα αίτημα ένωσης (pull request) με το βασικό κλαδί ανάπτυξης (develop) της εφαρμογής. Η δουλειά υπόκειται σε αξιολόγηση από την υπόλοιπη ομάδα (review) και όταν κριθεί ότι ικανοποιεί τις ανάγκες του έργου, το branch γίνεται merge με το develop. Όταν το develop φτάσει σε ικανό σημείο σταθερότητας και αλλαγών, γίνεται merge με το branch παραγωγής (master). Από το master δημιουργούνται οι τελικές εκδόσεις της εφαρμογής οι οποίες διανέμονται για χρήση στην παραγωγή (production versions), ενώ από το develop δημιουργούνται οι δοκιμαστικές εκδόσεις αιχμής της εφαρμογής οι οποίες χρησιμοποιούνται κατά τον έλεγχο (staging versions).
Το Scrum είναι μία μέθοδος οργάνωσης στην οποία ο επιμελητής του Scrum (Scrum master) διαχωρίζει τα ανεξάρτητα μέρη εργασίας (tasks) που πρέπει να υλοποιηθούν για την ολοκλήρωση των στόχων ενός project. Τα μέρη αυτά περιγράφονται αναλυτικά μαζί με τις απαιτήσεις τους και κατατίθενται σε μία λίστα εργασιών (backlog). Έπειτα, μέσα από συσκέψεις (meetings), επιλέγεται ένας αριθμός από tasks τα οποία ορίζουν το επόμενο προγραμματιστικό κύκλο (sprint). Κάθε task ανατίθεται σε κάποιο μέλος για υλοποίηση. Για το Sprint ορίζεται μία χρονική διάρκεια, στόχος της οποίας είναι η περάτωση όλων των tasks πριν τη λήξη της. Στο τέλος της προθεσμίας που ορίστηκε για το Sprint τα μέλη της ομάδας αποτιμούν τα αποτελέσματα και ορίζουν το επόμενο Sprint. Η διαδικασία επαναλαμβάνεται έως ότου το έργο ολοκληρωθεί.
Λόγω του πολύ μικρού μεγέθους της ομάδας, το Scrum ακολουθήθηκε ελαστικά. Συγκεκριμένα, δεν ορίστηκε ένας συγκεκριμένος επιμελητής του board αλλά κάθε μέλος της ομάδας φρόντιζε για τον ορισμό και την περιγραφή ενός μέρους των tasks. Τα sprints δεν ήταν συνεχόμενα και δεν είχαν πάντα τον ίδιο χρόνο εκτέλεσης αλλά προσαρμόζονταν ανάλογα με τις εκάστοτε ανάγκες και τον χρόνο των μελών. Κατά βάση, χρησιμοποιήθηκε η μέθοδος Kanban (που χρησιμοποιείται από το ίδιο το Scrum), για την οπτικοποίηση των tasks. Τα tasks χωρίστηκαν σε λίστες οι οποίες περιλαμβάνουν:
\begin{itemize}
\item σε αναμονή (backlog), περιλαμβάνει tasks τα οποία δεν έχουν ακόμα εισαχθεί σε κάποιο sprint
\item ενεργό sprint (sprint/todo), περιλαμβάνει tasks τα οποία συμμετέχουν στο ενεργό (τωρινό) sprint
\item εκτέλεση (in progress/doing), περιλαμβάνει tasks για τα οποία έχει ξεκινήσει η ανάπτυξη από κάποιο μέλος της ομάδας
\item έλεγχος και αξιολόγησης (testing/code review), περιλαμβάνει tasks των οποίων η ανάπτυξη έχει ολοκληρωθεί και βρίσκονται στο στάδιο ελέγχου (testing) ή αναμονής σε pull request
\item ολοκλήρωση (done), περιλαμβάνει tasks τα οποία έχουν τελειώσει, δηλαδή των οποίων η ανάπτυξη έχει ολοκληρωθεί και το pull request έχει γίνει merge
\end{itemize}
Τέλος, ορίστηκαν στις λίστες οι μέγιστοι αριθμοί tasks που μπορούν τα υπάρχουν σε κάθε χρονική στιγμή. Για παράδειγμα, μέχρι τέσσερα tasks στην λίστα εκτέλεσης. Αυτό έγινε για ενθάρρυνση της ολοκλήρωσης των tasks από τα μέλη, σε αντίθεση με την εγκατάλειψή τους σε ημιτελή κατάσταση της ανάπτυξης για την ανάληψη κάποιου νέου task.
\begin{figure}[H]
\centering
\includegraphics[width=.8\textwidth]{assets/figures/chapter-4/4.2.implementation-methodology-kanban.png}
\caption{Στιγμιότυπο οθόνης της διαδικτυακής υπηρεσίας Trello που χρησιμοποιήθηκε για την υλοποίηση του Scrum}
\label{figure:4.2.implementation-methodology-kanban}
\end{figure}
Κατά την διαδικασία της ανάπτυξης του κώδικα, εφαρμόστηκαν επίσης οι τακτικές που ορίζονται από το DevOps σε ό,τι αφορά το deployment των υπηρεσιών. Το DevOps ορίζει διάφορα εργαλεία που αποσκοπούν στην απρόσκοπτη, αυτοματοποιημένη και γρήγορα ενσωμάτωση του κώδικα από το στάδιο της συγγραφής μέχρι την ολοκλήρωση και εγκατάσταση. Τα εργαλεία που χρησιμοποιήθηκαν εδώ είναι:
\begin{itemize}
\item συνεχής έλεγχος (continuous testing)
\item συνεχής ολοκλήρωση (continuous integration)
\item συνεχής παράδοση (continuous delivery)
\item συνεχής εγκατάσταση (continuous deployment)
\end{itemize}
Για την υλοποίηση των τακτικών αυτών επιλέχθηκε μετά από εκτενή έρευνα η πλατφόρμα Jenkins. Το Jenkins συνδυάστηκε με την πλατφόρμα εικονοποίησης Docker ώστε να ακολουθηθούν οι τελευταίες ενδεδειγμένες πρακτικές της βιομηχανίας. Έγινε συγγραφή του αρχείου Jenkinsfile το οποίο περιγράφει με κώδικα την ροή εργασιών (pipeline) που πρέπει να ακολουθηθεί μετά από κάθε αλλαγή στον κώδικα. Η εκτέλεση του pipeline πραγματοποιείται αυτόματα από το Jenkins.
Το pipeline αποτελείται από στάδια και βήματα τα οποία φαίνονται στο σχήμα \ref{figure:4.2.implementation-methodology-jenkins-pipeline}:
\begin{enumerate}
\item Αρχικά εκτελείται το βήμα "Version", το οποίο συλλέγει στοιχεία σχετικά με την εκτέλεση του pipeline όπως το κλαδί του κώδικα που πυροδότησε τη ροή και ποια από τα πακέτα λογισμικού που περιλαμβάνονται στο git repository περιέχουν αλλαγές.
\item Έπειτα εκτελείται το στάδιο "TEST" το οποίο περιέχει δύο βήματα που εκτελούνται παράλληλα και πραγματοποιούν έλεγχο του κώδικα των πακέτων.
\item Αν το κλαδί πυροδότησης είναι ένα feature branch η ροή σταματά εδώ, ενώ αν πρόκειται για ένα από τα βασικά κλαδιά (master ή develop) τότε η ροή συνεχίζει με το στάδιο "BUILD" στο οποίο εκτελούνται παράλληλα τα βήματα που χτίζουν τα docker images των πακέτων εκείνων τα οποία περιέχουν αλλαγές.
\item Στο στάδιο "PUBLISH", αν το κλαδί πυροδότησης είναι το κύριο κλαδί παραγωγής (master), τότε εκτελούνται παράλληλα βήματα τα οποία δημοσιεύουν τα docker images που δημιουργήθηκαν στο αποθετήριο Dockerhub.
\item Τέλος, εκτελείται το στάδιο "DEPLOY", κατά το οποίο πραγματοποιείται η εγκατάσταση των υπηρεσιών στο ανάλογο περιβάλλον, staging για το κλαδί develop και production για το κλαδί master.
\end{enumerate}
\begin{figure}[H]
\centering
\includegraphics[width=.8\textwidth]{assets/figures/chapter-4/4-2-implementation-methodology-jenkins-pipeline.png}
\caption{Διάγραμμα ροής εργασιών Jenkins}
\label{figure:4.2.implementation-methodology-jenkins-pipeline}
\end{figure}
TODO: add continuous integration Με την χρήση του Jenkins αυτοματοποιείται με μεγάλη ευκολία ένα σημαντικό μέρος των διαδικασιών ανάπτυξης και δημοσίευσης του κώδικα. Με την χρήση του συγκεκριμένου pipeline γίνεται σίγουρο ό,τι σε κάθε αλλαγή, ασχέτως του κλαδιού ανάπτυξης ο κώδικας ελέγχεται και τα αποτελέσματα των tests είναι αποθηκευμένα και διαθέσιμα για ανάλυση. Ακόμα, για το κλαδί develop, αυτοματοποιείται η ολοκλήρωση των πακέτων και η εγκατάστασή τους σε περιβάλλον δοκιμής (staging), γεγονός που διευκολύνει σημαντικά τις συλλογικές δοκιμές από την ομάδα σε διαφορετικά περιβάλλοντα χρήσης (browsers). Τέλος, για το κλαδί master, αυτοματοποιείται η διαδικασία δημοσίευσης των docker images, μηδενίζοντας έτσι τον χρόνο που πρέπει να καταβάλουν τα μέλη της ομάδας σε αυτό.

12
chapters/4.application-implementation/4.3.implementation-technology-stack.tex

@ -1,8 +1,8 @@
\section{Τεχνολογίες υλοποίησης} \section{Τεχνολογίες υλοποίησης} \label{subsection:4-3-implementation-technology-stack}
Η παρούσα ενότητα απαρτίζεται από υποενότητες, στις οποίες διατυπώνονται τις βασικές τεχνολογίες που χρησιμοποιήθηκαν για την υλοποίηση της εφαρμογής. Η παρούσα ενότητα απαρτίζεται από υποενότητες, στις οποίες διατυπώνονται οι \textbf{σημαντικότερες} τεχνολογίες που χρησιμοποιήθηκαν για την υλοποίηση της εφαρμογής. Όλες οι τεχνολογίες αποτελούν δωρεάν λογισμικό ανοιχτού κώδικα.
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.ui-technologies.tex} \input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ethereum-technologies.tex} \input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ipfs-technologies.tex} \input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.development-technologies.tex} \input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies}

9
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies.tex

@ -0,0 +1,9 @@
\subsection{Τεχνολογίες σχετικές με το development}
Σε αυτήν την υποενότητα περιγράφονται ορισμένα θεμελιώδη εργαλεία και frameworks που συνετέλεσαν στην ανάπτυξη της εφαρμογής.
%TODO: Add janus and build steps diagram
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.1.node.js}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.2.docker}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.3.jenkins}

9
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.1.node.js.tex

@ -0,0 +1,9 @@
\subsubsection{Node.js} \label{subsection:4-3-1-1-node.js}
\logo{chapter-4/4.3.node.js-logo}{Node.js logo}
Το Node.js\footnote{\url{https://nodejs.org/}} είναι ένα περιβάλλον χρόνου εκτέλεσης Javascript πολλαπλών πλατφορμών, το οποίο εκτελείται στη μηχανή V8\footnote{\url{https://v8.dev/}} και παρέχει τη δυνατότητα εκτέλεσης κώδικα Javascript εκτός περιηγητών ιστού. Επιτρέπει στους προγραμματιστές να χρησιμοποιούν Javascript για τη σύνταξη εργαλείων γραμμής εντολών και τη δημιουργία κλιμακωτών διαδικτυακών εφαρμογών (κυρίως για εξυπηρετητές). Έχει αρχιτεκτονική βασισμένη σε συμβάντα (event-driven architecture), με δυνατότητα ασύγχρονης εισόδου/εξόδου (asynchronous I/O).\cite{4.3-node.js}
Ένα από τα σημαντικότερα χαρακτηριστικά του Node.js είναι ο ενσωματωμένος διαχειριστής πακέτων του, ο οποίος ονομάζεται npm. Με τον npm γίνεται εφικτή η εγκατάσταση πακέτων (βιβλιοθηκών) από το μητρώο npm (npm registry\footnote{\url{https://www.npmjs.com/}}), καθώς και η οργάνωση και η διαχείρισή τους στα πλαίσια της ανάπτυξης μίας εφαρμογής που εξαρτάται από αυτά.
Το Node.js έχει το αποθετήριό του στο GitHub (\url{https://github.com/nodejs/node}).

15
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.2.docker.tex

@ -0,0 +1,15 @@
\subsubsection{Docker} \label{subsection:4-3-1-2-docker}
\logo{chapter-4/4.3.docker-logo}{Docker logo}
Το Docker αποτελεί μία πλατφόρμα η οποία παρέχει λογισμικό εικονοποίησης (virtualization) στο επίπεδο του λειτουργικού συστήματος καθώς και ολοκληρωμένα συστήματα διαμοιρασμού και εκτέλεσης των παραγόμενων εικόνων.
Δίνει την δυνατότητα σύνθεσης εικονικών περιβαλλόντων λειτουργικού συστήματος τα οποία ονομάζονται εικόνες (images). Μέσα στις εικόνες είναι δυνατή η εκτέλεση προγραμμάτων σε ασφαλή, απομονωμένα και προβλέψιμα περιβάλλοντα τα οποία εγγυούνται τις ίδιες συνθήκες εκτέλεσης παντού. Έτσι, οι προγραμματιστές δεν χρειάζεται να ανησυχούν για το περιβάλλον εκτέλεσης του κώδικα και την ρύθμιση των παραμέτρων σε κάθε ξεχωριστή εγκατάσταση.
Ταυτόχρονα, η πλατφόρμα του Docker παρέχει συστήματα και τυποποιημένες μεθόδους για το πακετάρισμα των εικόνων, την μεταφόρτωση και την εκτέλεσή τους σε απομακρυσμένα συστήματα. Με αυτό τον τρόπο αποτελεί πολύτιμο εργαλείο το οποίο έχει γίνει το στάνταρ στη βιομηχανία λογισμικού για τον διαμοιρασμό και την εγκατάσταση ολοκληρωμένων εφαρμογών σε περιβάλλοντα δοκιμής (staging environments) και παραγωγής (production environment).
Τέλος, η δυνατότητα τοπικής εκτέλεσης των εικόνων στο σύστημα ανάπτυξης του κώδικα δίνει την ευκαιρία ελέγχου (testing) και αποσφαλμάτωσης (debug) τοπικά σε ένα περιβάλλον ίδιο με αυτό της εκτέλεσης. Αυτό είναι εξαιρετικά σημαντικό επειδή αποκλείει τυχών μεταβολές στην πορεία εκτέλεσης του προγράμματος που μπορεί να έρχονταν από την εκτέλεση σε ένα διαφορετικό περιβάλλον.
% example citations
% Merkel, Dirk. “Docker: Lightweight Linux Containers for Consistent Development and Deployment.” Linux Journal, vol. 2014, no. 239, 2014, p. 2.
% Anderson, Charles. “Docker [Software Engineering].” IEEE Software, vol. 32, no. 3, 2015.

14
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.development-technologies/4.3.1.3.jenkins.tex

@ -0,0 +1,14 @@
\subsubsection{Jenkins} \label{subsection:4-3-1-3-jenkins}
\logo{chapter-4/4.3.jenkins-logo}{Jenkins logo}
Το Jenkins είναι ένας πλήρως παραμετροποιήσιμος και επεκτάσιμος διακομιστής αυτοματοποίησης (automation server). Ο διακομιστής μπορεί να αυτοματοποιήσει τις διαδικασίες ελέγχου, ολοκλήρωσης, παράδοσης και εγκατάστασης του κώδικα, υλοποιώντας έτσι βασικές διαδικασίες που ορίζει το DevOps, συνεχή έλεγχο (continuous testing), συνεχή ολοκλήρωση (continuous integration), συνεχή παράδοση (continuous delivery) και συνεχή εγκατάσταση (continuous deployment). Επίσης, το Jenkins μπορεί να παραμετροποιηθεί μέσω των ρυθμίσεων που προσφέρει και των επεκτάσεων (plugins) που υπάρχουν ώστε να παρέχει τις δυνατότητες αυτές για οποιαδήποτε πλατφόρμα, γλώσσα και περιβάλλον ανάπτυξης.
Στο Jenkins είναι δυνατός ο ορισμός με χρήση κώδικα (σε Groovy και στο DSL που παρέχεται από το Jenkins) πολλαπλών γραμμών εργασιών (pipeline). Οι γραμμές εργασιών συντίθενται από πολλαπλά βήματα τα οποία επιτελούν ξεχωριστούς στόχους προς το τελικό αποτέλεσμα της γραμμής. Τα βήματα μπορούν να τρέχουν σειριακά ή παράλληλα. Ενώ δίνεται η δυνατότητα εκτέλεσης σε πολλαπλά, διανεμημένα συστήματα καθώς και άλλες προχωρημένες λειτουργικότητες.
Το Jenkins συνδυάζεται αποτελεσματικά με την πλατφόρμα του Docker που περιγράφηκε προηγουμένως. Μέσω του συνδυασμού δίνεται η ευκαιρία της αυτοματοποίησης του μεγαλύτερου μέρους του DevOps σε ένα απολύτως προβλέψιμο περιβάλλον το οποίο παραμένει σταθερό από την ανάπτυξη του κώδικα μέχρι την τελική εγκατάσταση. Με αυτή την μέθοδο βελτιώνεται σημαντικά η αποτελεσματικότητα των ομάδων ανάπτυξης κώδικα.
% example citations
% Shahin, Mojtaba, et al. “Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices.” IEEE Access, vol. 5, 2017, pp. 3909–3943.
% Meyer, Mathias. “Continuous Integration and Its Tools.” IEEE Software, vol. 31, no. 3, 2014, pp. 14–16.
% Virmani, Manish. “Understanding DevOps & Bridging the Gap from Continuous Integration to Continuous Delivery.” Fifth International Conference on the Innovative Computing Technology (INTECH 2015), 2015, pp. 78–82.

5
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.1.ui-technologies.tex

@ -1,5 +0,0 @@
\subsection{Τεχνολογίες σχετικές με το UI}
Στην παρούσα υποενότητα θα περιγραφούν όσες τεχνολογίες σχετίζονται με τη διεπαφή του χρήστη (UI), δηλαδή με το Presentation tier.
% TODO: add technologies like redux, sagas

5
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ethereum-technologies.tex

@ -1,5 +0,0 @@
\subsection{Τεχνολογίες σχετικές με το Ethereum}
Στην παρούσα υποενότητα θα περιγραφούν εκείνες οι τεχνολογίες που σχετίζονται με το Ethereum, δηλαδή με το Application tier.
% TODO: add ganache, truffle

9
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies.tex

@ -0,0 +1,9 @@
\subsection{Τεχνολογίες σχετικές με το UI}
Στην παρούσα υποενότητα περιγράφονται όσες τεχνολογίες σχετίζονται με τη διεπαφή του χρήστη (UI), δηλαδή με το Presentation tier.
% TODO: add technologies like redux, sagas
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.1.react}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.2.redux}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.3.redux-saga}

11
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.1.react.tex

@ -0,0 +1,11 @@
\subsubsection{React} \label{subsection:4-3-2-1-react}
\logo{chapter-4/4.3.react-logo}{React logo}
Η React\footnote{\url{https://reactjs.org/}} αποτελεί βιβλιοθήκη Javascript, η οποία χρησιμοποιείται για την κατασκευή διεπαφών χρήστη. Είναι δηλωτική (declarative) και βασίζεται σε components, τα οποία διαχειρίζονται την κατάστασή τους (state) και συντίθενται για να δημιουργήσουν πολύπλοκα διαδραστικά UIs.
%TODO: When https://2021.stateofjs.com/en-US/ is available, add to the paragraph above that is the most popular js front-end framework (by usage), according to https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/ and also add this beautiful chart.
Ένα σημαντικό εργαλείο για την ταχεία ανάπτυξη web εφαρμογών σε React είναι το Create React App\footnote{\url{https://create-react-app.dev/}}. Με τη χρήση μίας και μόνο εντολής (\texttt{npx create-react-app my-app}), εγκαθίσταται αυτόματα ένας development server σε περιβάλλον Node.js (ως μία μοναδική βιβλιοθήκη). Αυτός εμπεριέχει μία πληθώρα από build tools (π.χ. Webpack, Babel, ESLint), τα οποία προσφέρουν ισχυρές δυνατότητες, όπως άμεσα reloads και παραγωγή βελτιστοποιημένων bundles. Έτσι, η διαδικασία της υλοποίησης αποκτά ποικίλες διευκολύνσεις, χωρίς να απαιτεί την εκμάθηση, την χειροκίνητη εγκατάσταση και την προηγμένη διαμόρφωση των τεχνολογιών στο εσωτερικό.
Η React έχει το αποθετήριό της στο GitHub (\url{https://github.com/facebook/react/}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/react}).

27
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.2.redux.tex

@ -0,0 +1,27 @@
\subsubsection{Redux} \label{subsection:4-3-2-1-redux}
\logo{chapter-4/4.3.redux-logo}{Redux logo}
Το Redux\footnote{\url{https://redux.js.org/}} αποτελεί μία βιβλιοθήκη Javascript, η χρήση της οποίας προσφέρει στην εφαρμογή ένα πλήρως διαχειρίσιμο global state.
%TODO: When https://2021.stateofjs.com/en-US/ is available, add to the paragraph above that is the most popular data layer technology (by usage), according to https://2020.stateofjs.com/en-US/technologies/datalayer/ and also add this beautiful chart.
Τα δομικά στοιχεία του Redux είναι τα εξής:
\begin{itemize}
\item \textbf{Actions}: Αντικείμενα τα οποία περιέχουν νέα πληροφορία για την τροποποίηση του state της εφαρμογής.
\item \textbf{Reducers}: Συναρτήσεις οι οποίες λαμβάνοντας ένα action και διαβάζοντας το τρέχον state, εφαρμόζουν κάποια λογική για την παραγωγή ενός νέου state.
\item \textbf{Store}: Το αντικείμενο στο οποίο βρίσκεται αποθηκευμένο το state της εφαρμογής. Η βασική ιδιότητα του state είναι ότι παραμένει αμετάβλητο και, για την ανανέωσή του, παράγεται πάντα ένα νέο state object μέσω των reducer.
\item \textbf{Middleware}: Προαιρετικά κομμάτια κώδικα που λαμβάνουν actions πριν εκείνα φτάσουν στους reducers και εκτελούν κάποιο side effect. Συνήθως χρησιμοποιούνται για ενέργειες όπως logging και error reporting ή για να ενώσουν το Redux με εξωτερικά APIs.
\end{itemize}
Αν και το ίδιο το Redux είναι μικροσκοπικό σε μέγεθος, ο τρόπος υλοποίησής του έχει επιτρέψει τη δημιουργία ενός τεράστιου οικοσυστήματος εργαλείων και επεκτάσεων, τα οποία συνδέονται μαζί του ή βασίζονται σε αυτό. Για παράδειγμα, μία από τις κύριες χρήσεις του είναι η κατασκευή διεπαφών χρήστη σε συνδύασμό με άλλες βιβλιοθήκες, όπως με την React. Σε αυτήν την περίπτωση, συνδέεται μαζί της με το npm πακέτο \texttt{react-redux} και η λειτουργία του υπό ανάπτυξη UI προκύπτει ως εξής:
%TODO: Add proper diagram
\begin{figure}[H]
\centering
\includegraphics[width=.75\textwidth]{assets/figures/chapter-4/4.3.react-redux}
\caption{Λειτουργία του Redux σε συνδυασμό με React}
\end{figure}
Το Redux έχει το αποθετήριό του στο GitHub (\url{https://github.com/reduxjs/redux}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/redux}).

7
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.2.ui-technologies/4.3.2.3.redux-saga.tex

@ -0,0 +1,7 @@
\subsubsection{Redux-Saga} \label{subsection:4-3-2-3-redux-saga}
\logo{chapter-4/4.3.redux-saga-logo}{Redux-Saga logo}
Το Redux-Saga\footnote{\url{https://redux.js.org/}} αποτελεί μία βιβλιοθήκη Javascript του οικοσυστήματος του Redux. Πρόκειται για ένα Redux middleware, το οποίο χρησιμοποιεί ESG generator functions\footnote{\url{https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*}} για την εκτέλεση και διαχείριση ποικίλων ασύγχρονων side effect. Αυτές οι συναρτήσεις (sagas) παρέχουν μία πληθώρα επιλογών για την παράλληλη εκτέλεση κώδικα που μπορεί να σχετίζεται με εξωτερικά APIs, όπως με ένα blockchain ή μία βάση δεδομένων. Με αυτόν τον τρόπο, τα τελευταία μπορούν να συμπεριληφθούν στο κεντρικό Redux store και τη διαχείριση του συνολικού state της εφαρμογής.
Το Redux-Saga έχει το αποθετήριό του στο GitHub (\url{https://github.com/redux-saga/redux-saga}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/redux-saga}).

6
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies.tex

@ -0,0 +1,6 @@
\subsection{Τεχνολογίες σχετικές με το Ethereum} \label{subsection:4-3-3-ethereum-technologies}
Στην παρούσα υποενότητα περιγράφονται εκείνες οι τεχνολογίες που σχετίζονται με το Ethereum, δηλαδή με το Application tier της τεχνολογικής στοίβας.
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies/4.3.3.1.truffle}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies/4.3.3.2.ganache}

11
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies/4.3.3.1.truffle.tex

@ -0,0 +1,11 @@
\subsubsection{Truffle} \label{subsection:4-3-3-1-truffle}
\logo{chapter-4/4.3.truffle-logo}{Truffle logo}
Το Truffle\footnote{\url{https://trufflesuite.com/truffle/}} είναι ένα από τα δημοφιλέστερα Ethereum development frameworks και αποτελεί τμήμα της σουίτας Truffle.
Μέσω του Truffle πραγματοποιείται η διαχείριση των έξυπνων συμβολαίων. Αυτή περιλαμβάνει τη δοκιμή, τη σύνδεση και τη μεταγλώττισή τους, καθώς και την ανάπτυξη τους στο blockchain.
Επίσης, το Truffle περιέχει πρόσθετα σχετικά εργαλεία, όπως διαδραστική κονσόλα για άμεση αλληλεπίδραση με τα contracts και εκτελεστής εξωτερικών σεναρίων (external script runner).
Έχει το αποθετήριό του στο GitHub (\url{https://github.com/trufflesuite/truffle}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/truffle}).

21
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ethereum-technologies/4.3.3.2.ganache.tex

@ -0,0 +1,21 @@
\subsubsection{Ganache} \label{subsection:4-3-3-2-ganache}
\logo{chapter-4/4.3.ganache-logo}{Ganache logo}
Το Ganache\footnote{\url{https://trufflesuite.com/ganache/}} είναι ένα λογισμικό που παρέχει ένα βοηθητικό προσωπικό Ethereum blockchain για ταχεία ανάπτυξη αποκεντρωμένων εφαρμογών και αποτελεί επίσης τμήμα της σουίτας Truffle. Διατίθεται τόσο ως desktop εφαρμογή με UI, όσο και ως CLI (command-line interface).
To Ganache παρέχει ισχυρά εργαλεία για την ανάπτυξη έξυπνων συμβολαίων, όπως:
\begin{itemize}
\item Block explorer, μέσω του οποίου μπορούν να εξεταστούν λεπτομερώς όλα τα blocks και οι συναλλαγές που έλαβαν χώρα.
\item Εξρεύνηση των εσωτερικών των contracts και των πυροδοτημένων event τους.
\item Ενδελεχές αρχείο καταγραφής της εξόδου του blockchain, το οποίο περιλαμβάνει σημαντικές πληροφορίες για τον εντοπισμό σφαλμάτων.
\item Δυνατότητα διαμόρφωσης του χρόνου εξόρυξης των block, έτσι ώστε να αρμόζει με τις εκάστοτε ανάγκες (αυτόματη εξόρυξη ή εξόρυξη σε προσαρμοσμένο χρονικό διάστημα).
\end{itemize}
\begin{figure}[H]
\centering
\includegraphics[width=.95\textwidth]{assets/figures/chapter-4/4.3.ganache-gui}
\caption{Ganache (desktop εφαρμογή)}
\end{figure}
Το Ganache έχει το αποθετήριό του στο GitHub (\url{https://github.com/trufflesuite/ganache}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/ganache}).

5
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ipfs-technologies.tex

@ -1,5 +0,0 @@
\subsection{Τεχνολογίες σχετικές με το IPFS}
Στην παρούσα υποενότητα θα περιγραφούν όσες τεχνολογίες σχετίζονται με το IPFS, δηλαδή με το Data tier.
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ipfs-technologies/4.3.3.1.orbit-db.tex}

5
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.development-technologies.tex

@ -1,5 +0,0 @@
\subsection{Τεχνολογίες σχετικές με το development}
Σε αυτήν την υποενότητα θα περιγραφούν εργαλεία και frameworks που συνετέλεσαν στην ανάπτυξη της εφαρμογής.
% TODO: add nodejs, docker, jenkins, janus and build steps diagram

7
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies.tex

@ -0,0 +1,7 @@
\subsection{Τεχνολογίες σχετικές με το IPFS}
Σε αυτήν την υποενότητα περιγράφονται όσες τεχνολογίες σχετίζονται με το IPFS (βλ. ενότητα \ref{section:2-7-ipfs}), δηλαδή με το Data tier της τεχνολογικής στοίβας της εφαρμογής.
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.1.js-ipfs}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.2.orbit-db}
\input{chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.3.libp2p}

7
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.1.js-ipfs.tex

@ -0,0 +1,7 @@
\subsubsection{js-ipfs} \label{subsection:4-3-4-1-js-ipfs}
\logo{chapter-4/4.3.js-ipfs-logo}{js-ipfs logo}
H υλοποίηση του IPFS που χρησιμοποείται στην εφαρμογή Concordia είναι αυτή σε Javascript και ονομάζεται js-ipfs. Μέσω αυτής της βιβλιοθήκης, παρέχεται η δυνατότητα δημιουργίας ενός IPFS κόμβου, τόσο σε έναν Node.js server, όσο και σε ένα περιβάλλον browser.
Το js-ipfs έχει το αποθετήριό του στο GitHub (\url{https://github.com/ipfs/js-ipfs}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/ipfs}).

4
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.3.ipfs-technologies/4.3.3.1.orbit-db.tex → chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.2.orbit-db.tex

@ -1,4 +1,4 @@
\subsubsection{OrbitDB} \label{subsection:4-3-3-1-orbit-db} \subsubsection{OrbitDB} \label{subsection:4-3-4-2-orbit-db}
\logo{chapter-4/4.3.orbitdb-logo}{OrbitDB logo} \logo{chapter-4/4.3.orbitdb-logo}{OrbitDB logo}
@ -30,3 +30,5 @@
\item \textbf{Access Control}: Κατά τη δημιουργία μίας βάσης μπορούν να οριστούν όσοι θα έχουν δικαίωμα εγγραφής σε αυτή, μέσω ενός ελεγκτή πρόσβασης (access controller). Ο ελεγκτής θα περιλαμβάνει τα public keys τους, τα οποία μπορούν να ανακτηθούν από το identity του καθενός. Από προεπιλογή και αν δεν ορίζεται διαφορετικά, δίνεται πρόσβαση εγγραφής μόνο στον δημιουργό της βάσης. \item \textbf{Access Control}: Κατά τη δημιουργία μίας βάσης μπορούν να οριστούν όσοι θα έχουν δικαίωμα εγγραφής σε αυτή, μέσω ενός ελεγκτή πρόσβασης (access controller). Ο ελεγκτής θα περιλαμβάνει τα public keys τους, τα οποία μπορούν να ανακτηθούν από το identity του καθενός. Από προεπιλογή και αν δεν ορίζεται διαφορετικά, δίνεται πρόσβαση εγγραφής μόνο στον δημιουργό της βάσης.
\end{itemize} \end{itemize}
Η OrbitDB έχει το αποθετήριό της στο GitHub (\url{https://github.com/orbitdb/orbit-db}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/orbit-db}).

9
chapters/4.application-implementation/4.3.implementation-technology-stack/4.3.4.ipfs-technologies/4.3.4.3.libp2p.tex

@ -0,0 +1,9 @@
\subsubsection{Libp2p} \label{subsection:4-3-4-3-libp2p}
\logo{chapter-4/4.3.libp2p-logo}{Libp2p logo}
Η libp2p είναι ένα αρθρωτό σύστημα πρωτοκόλλων, προδιαγραφών και βιβλιοθηκών που επιτρέπουν την ανάπτυξη p2p εφαρμογών. Αποτελεί το υποκείμενο επίπεδο δικτύου του IPFS.\ref{2.7-ipfs-docs}
Ένα από τα υλοποιημένα πρωτόκολλα μεταφοράς δεδομένων της libp2p είναι το libp2p-webrtc-star\footnote{\url{https://github.com/libp2p/js-libp2p-webrtc-star}}. Αποτελεί το πρωτόκολλο μεταφοράς δεδομένων της εφαρμογής, καθώς υποστηρίζεται τόσο από Node.js servers, όσο και από browsers. Περιλαμβάνει, επίσης, έναν signalling server, που επιτρέπει τη γρήγορη διασύνδεση των peers.
Το libp2p-webrtc-star έχει το αποθετήριό του στο GitHub (\url{https://github.com/libp2p/js-libp2p-webrtc-star}) και διατίθεται μέσω του μητρώου npm (\url{https://www.npmjs.com/package/libp2p-webrtc-star}).

1
chapters/4.application-implementation/4.5.problems-faced.tex

@ -0,0 +1 @@
\section{Προβλήματα ανάπτυξης}

1
chapters/4.application-implementation/4.6.design-implementation-differences.tex

@ -0,0 +1 @@
\section{Διαφορές σχεδιασμού-υλοποίησης} \label{section:4-5-design-implementation-differen}

2
chapters/5.conclusions-open-areas/5.2.open-areas.tex

@ -46,5 +46,3 @@
Ορισμένες ενδεικτικές χρήσεις του είναι η συνεργασία του με τους μηχανισμούς που περιγράφονται στις υποενότητες \ref{subsection:5-2-1-ethereum-fees-management} και \ref{subsection:5-2-3-alternative-voting-systems}. Για παράδειγμα, η ισχύς της ψήφου ενός μέλους μίας κοινότητας ή το ποσό των τελών που καλείται να καταβάλλει στο Ethereum θα μπορούσαν να υπολογίζονται αναλογα με τον βαθμό εμπιστοσύνης που έχει κατακτήσει. Ορισμένες ενδεικτικές χρήσεις του είναι η συνεργασία του με τους μηχανισμούς που περιγράφονται στις υποενότητες \ref{subsection:5-2-1-ethereum-fees-management} και \ref{subsection:5-2-3-alternative-voting-systems}. Για παράδειγμα, η ισχύς της ψήφου ενός μέλους μίας κοινότητας ή το ποσό των τελών που καλείται να καταβάλλει στο Ethereum θα μπορούσαν να υπολογίζονται αναλογα με τον βαθμό εμπιστοσύνης που έχει κατακτήσει.
Υιοθετώντας την αφηρημένη λογική που περιγράφηκε στα συστήματα ψηφοφορίας της προηγούμενης παραγράφου, είναι εφικτό να παρέχεται η δυνατότητα σε κάθε κοινότητα να επιλέγει μεταξύ ενός συνόλου διαφορετικών συστημάτων απόδοσης εμπιστοσύνης για τα μέλη της, μέσω εναλλακτικών reputation smart contract. Ήδη υπάρχει μία πλούσια γκάμα τέτοιων συστημάτων που μπορούν να υλοποιηθούν επί του Ethereum, με την ταξινομία τους να ορίζεται επί μίας πληθώρας ανεξάρτητων διαστάσεων.\cite{5.2-taxonomy-of-reputation-systems} Ωστόσο, η περαιτέρω ανάλυση τους, είναι θέμα που εκτείνεται πέρα από τα πλαίσια της παρούσας διπλωματικής εργασίας. Υιοθετώντας την αφηρημένη λογική που περιγράφηκε στα συστήματα ψηφοφορίας της προηγούμενης παραγράφου, είναι εφικτό να παρέχεται η δυνατότητα σε κάθε κοινότητα να επιλέγει μεταξύ ενός συνόλου διαφορετικών συστημάτων απόδοσης εμπιστοσύνης για τα μέλη της, μέσω εναλλακτικών reputation smart contract. Ήδη υπάρχει μία πλούσια γκάμα τέτοιων συστημάτων που μπορούν να υλοποιηθούν επί του Ethereum, με την ταξινομία τους να ορίζεται επί μίας πληθώρας ανεξάρτητων διαστάσεων.\cite{5.2-taxonomy-of-reputation-systems} Ωστόσο, η περαιτέρω ανάλυση τους, είναι θέμα που εκτείνεται πέρα από τα πλαίσια της παρούσας διπλωματικής εργασίας.
\subsection{Βελτιώσεις στα Ethereum και IPFS}\label{subsection:5-2-5-ethereum-ipfs-improvements}

BIN
thesis.pdf

Binary file not shown.
Loading…
Cancel
Save