Browse Source

Init band pass report unit implementation part, Add half power freq transformation, Minor low pass report fix

master
Apostolos Fanakis 6 years ago
parent
commit
98c2d95b27
  1. 31
      Band Pass Chebyshev/band_pass_design.m
  2. 2
      report/1_low_pass/1_low_pass_design.pug
  3. 45
      report/2_band_pass/2_band_pass.pug
  4. 171
      report/2_band_pass/2_band_pass_design.pug
  5. 2
      report/2_band_pass/assets/diagrams/band_pass_chebyshev_units_diagram.svg
  6. 311
      report/2_band_pass/assets/diagrams/band_pass_general_transfer_function_plot.svg
  7. 178
      report/2_band_pass/assets/diagrams/matlab_band_pass_chebyshev_zero_pole.svg

31
Band Pass Chebyshev/band_pass_design.m

@ -131,11 +131,19 @@ epsilon_parameter = sqrt(10^(specification_max_pass_attenuation/10)-1);
% Calculates alpha parameter using the eq. 9-92
alpha_parameter = asinh(1/epsilon_parameter)/design_filter_order;
% Calculates the frequency at which half power occurs using the eq. 9-80
% TODO: denormalize!! ====================%%%%%%%%%%%%%%%%%%%%%%%%============================
design_half_power_radial_frequency = cosh(acosh(( ...
10^(specification_max_pass_attenuation/10-1))^(-1/2))/ ...
% Calculates the frequency at which half power for the prototype low pass
% filter occurs using the eq. 9-80
temp_low_pass_half_power_radial_frequency = cosh(acosh(1/epsilon_parameter)/ ...
design_filter_order); % rad/s
% Calculates the frequency at which half power for the band pass filter
% occurs using the transformation eq. 11-53
design_half_power_radial_frequency = zeros([1 2]);
temp_polynomial = [1 ...
-temp_low_pass_half_power_radial_frequency*design_filter_bandwidth ...
-design_geometric_central_radial_frequency^2];
temp_roots = roots(temp_polynomial);
design_half_power_radial_frequency(1,1) = abs(temp_roots(1));
design_half_power_radial_frequency(1,2) = abs(temp_roots(2));
% -----
% Calculates stable poles, zeros, angles and other characteristic sizes
@ -207,12 +215,13 @@ fprintf(['\n' '===== PROTOTYPE LOW PASS DESIGN =====' '\n' ...
'Filter order ceiling = %d\n' ...
'Epsilon parameter = %.3f\n' ...
'Alpha parameter = %.3f\n' ...
'Radial frequency at which half power occurs = %.3frad/s\n' ...
'Radial frequencies at which half power occurs = %.3frad/s, %.3frad/s\n' ...
'Butterworth angles are ' char(177) '%.2f' char(176) ' and ' ...
char(177) '%.2f' char(176) '\n'], ...
temp_filter_order, design_filter_order, ...
epsilon_parameter, alpha_parameter, ...
design_half_power_radial_frequency, design_butterworth_angles(1,1), ...
design_half_power_radial_frequency(1,1), ...
design_half_power_radial_frequency(1,2), design_butterworth_angles(1,1), ...
design_butterworth_angles(1,2));
fprintf('\nLow pass Chebyshev poles found:\n');
@ -225,9 +234,10 @@ end
% Clears unneeded variables from workspace
clearVars = {'prototype_normalized_stop_radial_frequency', ...
'epsilon_parameter', 'alpha_parameter', 'theta', 'temp_filter_order'};
'epsilon_parameter', 'alpha_parameter', 'theta'};
clear(clearVars{:})
clear clearVars
clear -regexp ^temp_
% ========== PROTOTYPE LOW PASS DESIGN END ==========
@ -293,7 +303,7 @@ for i=1:prototype_number_of_poles
geffe_W = geffe_k+sqrt(geffe_k^2-1);
% Calculates the radius of the circles upon which the two poles
% reside using the eq. 11-15
% reside using the eq. 11-35
geffe_Omega_0_1 = design_geometric_central_radial_frequency* ...
geffe_W;
geffe_Omega_0_2 = design_geometric_central_radial_frequency/ ...
@ -315,7 +325,7 @@ for i=1:prototype_number_of_poles
end
% Outputs results
fprintf(['\n' '===== HIGH PASS TO BAND PASS TRANSFORMATION =====' '\n' ...
fprintf(['\n' '===== LOW PASS TO BAND PASS TRANSFORMATION =====' '\n' ...
'The low pass Chebyshev filter is transformed into a band pass\n' ...
'Chebyshev using the Geffe algorithm to transform the poles.\n']);
@ -523,6 +533,7 @@ ltiview(unit_transfer_function(1,1), unit_transfer_function(1,2), ...
total_transfer_function);
%}
%{
hold off
sampling_time_seconds = 60; % s
@ -572,7 +583,7 @@ Pyy = system_output_fft.*conj(system_output_fft)/sampling_length_L;
figure(3)
semilogx(frequency_vector,Pyy(1:sampling_length_L/2+1))
grid on
%}
% Clears unneeded variables from workspace
clearVars = {'temp', 'Pyy', 'frequency_vector', 'system_output', ...
'units_transfer_functions', 'system_output_fft', ...

2
report/1_low_pass/1_low_pass_design.pug

@ -109,7 +109,7 @@ p.latex-equation.
$$\omega_{z_k} = \sec\big(\frac{k\pi}{2n}\big) \text{, } k=1,3,5,...$$
p.
τα μηδενικά της συνάρτησης μεταφοράς;
τα μηδενικά της συνάρτησης μεταφοράς:
p.latex-equation.
$$\text{Zero 1: } 0\pm1.082\mathrm{i}$$

45
report/2_band_pass/2_band_pass.pug

@ -16,51 +16,60 @@ figure.block-center.width-15cm
tbody
tr
td Central frequency (f#[sub 0])
td 72570.790 rad/s
td 900 Hz
tr
td Central radial frequency (ω#[sub 0])
td 72570.790 rad/s
tr
td Frequency bandwidth (bw)
td 72570.790 rad/s
tr
td Radial frequency bandwidth (bw)
td 72570.790 rad/s
td 5654.867 rad/s
tr
td Low pass frequency (f#[sub 1])
td 5500 Hz
td 800 Hz
tr
td Low pass radial frequency (ω#[sub 1])
td 34557.519 rad/s
td 5026.548 rad/s
tr
td High pass frequency (f#[sub 2])
td 5500 Hz
td 1012.5 Hz
tr
td High pass radial frequency (ω#[sub 2])
td 34557.519 rad/s
td 6361.725 rad/s
tr
td Low stop frequency (f#[sub 3])
td 11550 Hz
td 696.11 Hz
tr
td Low stop radial frequency (ω#[sub 3])
td 72570.790 rad/s
td 4373.786 rad/s
tr
td High stop frequency (f#[sub 4])
td 11550 Hz
td 1163.61 Hz
tr
td High stop radial frequency (ω#[sub 4])
td 72570.790 rad/s
td 7311.175 rad/s
tr
td Frequency bandwidth (bw)
td 212.5 Hz
tr
td Radial frequency bandwidth (bw)
td 1335.177 rad/s
tr
td Min stop attenuation (a#[sub min])
td 23.75 dB
td 28.556 dB
tr
td Max pass attenuation (a#[sub max])
td 0.35 dB
td 0.667 dB
figcaption
.reference #[span.table-count]
.caption.
Προδιαγραφές σχεδίασης ζωνοδιαβατού φίλτρου
figure.block-center.width-15cm
img(src="2_band_pass/assets/diagrams/band_pass_general_transfer_function_plot.svg").width-15cm
figcaption
.reference #[span.plot-count]
.caption.title.
Ποιοτικό γράφημα συνάρτησης μεταφοράς ζωνοδιαβατού Chebyshev φίλτρου.
.caption.
Στο γράφημα φαίνονται οι συχνότητες που ορίζουν τη ζώνη διόδου (f#[sub 1]/ω#[sub 1] και f#[sub 2]/ω#[sub 2]) και τη ζώνη αποκοπής (f#[sub 3]/ω#[sub 3] και f#[sub 4]/ω#[sub 4]), καθώς και οι προδιαγραφές α#[sub min] και α#[sub max].
// Sub-Chapters
include 2_band_pass_design
//- include 1_low_pass_transfer_function_matlab

171
report/2_band_pass/2_band_pass_design.pug

@ -21,7 +21,7 @@ h4 Υπολογισμός συνάρτησης μεταφοράς
p Αρχικά υπολογίζεται η κεντρική συχνότητα χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 11-2]:
p.latex-equation.
$$\omega_0 = \sqrt{\omega_1\omega_2}=...$$
$$\omega_0 = \sqrt{\omega_1\omega_2}=\sqrt{5026.548*6361.725}=5654.867$$
p.
Η κεντρική συχνότητα που υπολογίστηκε προκύπτει ίση με αυτή που δίνεται στην εκφώνηση, επιβεβαιώνεται έτσι ότι οι συχνότητες ω#[sub 1] - ω#[sub 4] υπολογίστηκαν σωστά.
@ -30,7 +30,7 @@ p.
Υπολογίζεται το εύρος ζώνης διόδου χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 11-52]:
p.latex-equation.
$$bw = \omega_2-\omega_1=...$$
$$bw = \omega_2-\omega_1=6361.725-5026.548=1335.177$$
p.
Σχεδιάζεται ένα πρότυπο κατωδιαβατό Chebyshev φίλτρο, το οποίο αργότερα θα μετατραπεί στο επιθυμητό ζωνοδιαβατό Chebyshev.
@ -39,14 +39,14 @@ p Υπολογίζονται οι προδιαγραφές του προτότυ
p.latex-equation.
$$\Omega_p = 1\frac{rad}{s}$$
και $$\Omega_S = \frac{\omega_4-\omega_3}{\omega_2-\omega_1} = \frac{34557.519}{72570.790} = 0.476\frac{rad}{s}$$
και $$\Omega_S = \frac{\omega_4-\omega_3}{\omega_2-\omega_1} = \frac{2937.389}{1335.177} = 2.2\frac{rad}{s}$$
p Οι προδιαγραφές απόσβεσης παραμένουν ίδιες.
p Υπολογίζεται η τάξη του φίλτρου χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 9-83]:
p.latex-equation.
$$n = \left \lceil \frac{cos^{-1}\bigg(\sqrt{\frac{10^{\frac{a_{min}}{10}}-1}{10^{\frac{a_{max}}{10}}-1}}\bigg)}{cosh^{-1}\omega_S} \right \rceil = \left \lceil \frac{cos^{-1}\bigg(\sqrt{\frac{10^{2.375}-1}{10^{0.035}-1}}\bigg)}{cos^{-1}(2.1)} \right \rceil = \left \lceil \frac{4.6642}{1.373} \right \rceil = \left \lceil 3.397 \right \rceil = 4$$
$$n = \left \lceil \frac{cos^{-1}\bigg(\sqrt{\frac{10^{\frac{a_{min}}{10}}-1}{10^{\frac{a_{max}}{10}}-1}}\bigg)}{cosh^{-1}\Omega_S} \right \rceil = \left \lceil \frac{cos^{-1}\bigg(\sqrt{\frac{10^{2.8556}-1}{10^{0.0667}-1}}\bigg)}{cosh^{-1}(2.2)} \right \rceil = \left \lceil \frac{4.87789}{1.42542} \right \rceil = \left \lceil 3.422 \right \rceil = 4$$
p.
Από τον παραπάνω τύπο φαίνεται ότι κατά τον υπολογισμό της τάξης του φίλτρου γίνεται στρογγυλοποίηση της τάξης προς τον επόμενο #[strong μεγαλύτερο] ακέραιο. Αυτό γίνεται επειδή δεν είναι δυνατή η υλοποίηση ενός φίλτρου ρητής τάξεως, έτσι είναι απαραίτητο η τάξη να στρογγυλοποιηθεί. Η στρογγυλοποίηση είναι σημαντικό να γίνει προς τα επάνω (ceiling) ώστε να επιτευχθούν οι προδιαγραφές του φίλτρου. Μία πιθανή στρογγυλοποίηση προς τα κάτω θα είχε ως αποτέλεσμα την αποτυχία στη σχεδίαση.
@ -58,21 +58,20 @@ p.
Στη συνέχεια υπολογίζονται οι παράμετροι ε και α από τις εξισώσεις #[span.course-notes-equation 9-76] και #[span.course-notes-equation 9-92] αντίστοιχα:
p.latex-equation.
$$\varepsilon = \sqrt{10^{\frac{a_{max}}{10}}-1} = \frac{1}{\sqrt{10^{2.375}-1}} = 0.065$$
$$\varepsilon = \sqrt{10^{\frac{a_{max}}{10}}-1} = \sqrt{10^{0.0667}-1} = 0.407$$
p.latex-equation.
$$\alpha = \frac{\sinh^{-1}(\frac{1}{\varepsilon})}{n} = \frac{\sinh^{-1}(\frac{1}{0.065})}{n} = 0.857$$
$$\alpha = \frac{\sinh^{-1}(\frac{1}{\varepsilon})}{n} = \frac{\sinh^{-1}(\frac{1}{0.407})}{4} = 0.408$$
p.
Υπολογίζεται η κανονικοποιημένη συχνότητα ημίσειας ισχύος χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 9-80]:
p.latex-equation.
$$\Omega_{hp} = cosh(\frac{1}{n}cosh^{-1}(\frac{1}{\varepsilon})) = \frac{1}{cosh(\frac{1}{4}cosh^{-1}(\frac{1}{0.065}))} = 0.7196\frac{rad}{s}$$
$$\Omega_{hp} = cosh(\frac{1}{n}cosh^{-1}(\frac{1}{\varepsilon})) = cosh(\frac{1}{4}cosh^{-1}(\frac{1}{0.407})) = 1.076\frac{rad}{s}$$
div(style="page-break-before:always")
p και στη συνέχεια μεταφέρεται στη πραγματική συχνότητα:
p Οι πραγματικές συχνότητες προκύπτουν μετασχηματίζοντας την κανονικοποιημένη, χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 11-53]:
p.latex-equation.
$$\omega_{hp} = \Omega_{hp} * \omega_s = 0.7196 * 72570.790 = 52222.58\frac{rad}{s}$$
$$\begin{matrix} \Omega_{hp}=-\frac{-\omega^2+\omega_0^2}{\omega(\omega_2-\omega_1)} \Rightarrow \\[1.1em] \omega^2-\Omega_{hp}*bw*\omega-\omega_0^2 = 0 \Rightarrow \\[1.1em] \omega^2-1.076*1335.177*\omega-(5654.867)^2 = 0 \Rightarrow \left\{\begin{matrix} \omega_1 = 4982.146\frac{rad}{s} \\[1.1em] \omega_2 = 6418.423\frac{rad}{s} \end{matrix}\right. \end{matrix}$$
p.
Οι γωνίες Butterworth μπορούν να υπολογιστούν με βάση τον αλγόριθμο Guillemin ή να βρεθούν απευθείας από γνωστούς πίνακες γωνιών Butterworth. Για φίλτρο τέταρτης τάξης, οι γωνίες είναι:
@ -90,95 +89,127 @@ p.latex-equation.
p προκύπτουν οι πόλοι #[strong Chebyshev]:
p.latex-equation.
$$\text{Pole 1: } -0.892\pm0.532\mathrm{i}$$
$$\text{Pole 2: } -0.369±1.284\mathrm{i}$$
$$\text{Pole 1: } -0.387\pm0.415\mathrm{i}$$
$$\text{Pole 2: } -0.16±1.002\mathrm{i}$$
p.
Χρησιμοποιώντας τις εξισώσεις #[span.course-notes-equation 9-150] και #[span.course-notes-equation 9-151]:
Οι πόλοι μετασχηματίζονται χρησιμοποιώντας τον αλγόριθμο Geffe. Κάθε ζεύγος μιγαδικών πόλων παράγει, κατά τον μετασχηματισμό, δύο νέα ζεύγη μιγαδικών πόλων με ίδιο Q και διαφορετικά ω. Οι απαραίτητες παράμετροι υπολογίζονται χρησιμοποιώντας τις εξισώσεις #[span.course-notes-equation 11-6], #[span.course-notes-equation 11-28] έως και #[span.course-notes-equation 11-35], #[span.course-notes-equation 11-37b]:
p.latex-equation.
$$\Omega_{0_k} = \sqrt{\sigma_k^2+\Omega_k^2}$$
$$Q_k = \frac{1}{2*\cos(\tan^{-1}(\frac{\Omega_k}{\sigma_k}))}$$
p υπολογίζονται τα Ω#[sub 0] και Q των πόλων αντίστοιχα:
p.latex-equation.
$$\text{Pole 1: } \Omega_0 = 1.038 \text{, }Q = 0.582$$
$$\text{Pole 2: } \Omega_0 = 1.336 \text{, }Q = 1.809$$
$$\begin{matrix} 11-6: & q_c=\frac{\omega_0}{bw}\\[1em] 11-28: & C=\Sigma_2^2+\Omega_2^2\\[1em] 11-29: & D=\frac{2\Sigma_2}{q_c}\\[1em] 11-30: & E=4+\frac{C}{q_c^2}\\[1em] 11-31: & G=\sqrt{E^2-4D^2}\\[1em] 11-32: & Q=\frac{1}{D}\sqrt{\frac{1}{2}(E+G)}\\[1em] 11-33: & k=\frac{\Sigma_2Q}{q_c}\\[1em] 11-34: & W=k+\sqrt{k^2-1}\\[1em] 11-35: & \omega_{02}=W\omega_0 \hspace{3mm} \& \hspace{3mm} \omega_{01}=\frac{\omega_0}{W}\\[1em] 11-37b: & \psi_{ki}=\cos^{-1}(\frac{1}{2Q}) \end{matrix}$$
p.
Οι πόλοι αντιστρέφονται χρησιμοποιώντας την εξίσωση #[span.course-notes-equation 9-146] για τον υπολογισμό των ω#[sub 0#[sub k]], ενώ τα Q παραμένουν ίδια:
Στον παρακάτω πίνακα φαίνονται οι τιμές των παραμέτρων του αλγόριθμου Geffe για κάθε πόλο του πρωτότυπου φίλτρου, καθώς και οι μετασχηματισμένοι πόλοι που προκύπτουν:
p.latex-equation.
$$\omega_{0_k} = \frac{1}{\Omega_{0_k}}$$
figure.block-center.width-15cm
table.ui.celled.table.teal.striped.center.aligned
thead
tr
th Παράμετρος
th Pole 1
th Pole 2
tbody
tr
td q#[sub c]
td 4.2353
td 4.2353
tr
td C
td 0.322
td 1.0291
tr
td D
td 0.1828
td 0.0757
tr
td E
td 4.018
td 4.0574
tr
td G
td 4.0013
td 4.0545
tr
td Q
td 10.9546
td 26.5991
tr
td k
td 1.0012
td 1.007
tr
td W
td 1.0502
td 1.1252
tr
td ω
td.
ω#[sub 01] = 5938.942
#[br]
ω#[sub 02] = 5384.379
td.
ω#[sub 03] = 6363.121
#[br]
ω#[sub 04] = 5025.446
tr
td ψ#[sub ki]
td ±87.38°
td ±88.92°
figcaption
.reference #[span.table-count]
.caption.
Τιμές παραμέτρων αλγόριθμου Geffe
div(style="page-break-before:always")
p.
Από τον μετασχηματισμό προκύπτουν οι πόλοι του #[strong αντίστροφου Chebyshev]:
p.latex-equation.
$$\text{Pole 1: } \omega_0 = 0.963 \text{, }Q = 0.582$$
$$\text{Pole 2: } \omega_0 = 0.748 \text{, }Q = 1.809$$
p.
Κατά τον μετασχηματισμό προκύπτουν επίσης, με βάση την εξίσωση #[span.course-notes-equation 9-143]:
Επομένως από τον μετασχηματισμό προκύπτουν οι πόλοι του #[strong ζωνοδιαβατού Chebyshev]:
p.latex-equation.
$$\omega_{z_k} = \sec\big(\frac{k\pi}{2n}\big) \text{, } k=1,3,5,...$$
$$\text{Pole 1: } \omega_0 = 5938.942 \text{, }Q = 10.9546$$
$$\text{Pole 2: } \omega_0 = 5384.379 \text{, }Q = 10.9546$$
$$\text{Pole 3: } \omega_0 = 6363.121 \text{, }Q = 26.5991$$
$$\text{Pole 4: } \omega_0 = 5025.446 \text{, }Q = 26.5991$$
p.
τα μηδενικά της συνάρτησης μεταφοράς;
Κατά τον μετασχηματισμό προκύπτουν επίσης, με βάση τον μετασχηματισμό Geffe, τα μηδενικά της συνάρτησης μεταφοράς:
p.latex-equation.
$$\text{Zero 1: } 0\pm1.082\mathrm{i}$$
$$\text{Zero 2: } 0\pm2.613\mathrm{i}$$
$$\text{Zero 1: } 0+0\mathrm{i}$$
$$\text{Zero 2: } 0+0\mathrm{i}$$
$$\text{Zero 3: } 0+0\mathrm{i}$$
$$\text{Zero 4: } 0+0\mathrm{i}$$
p.
Οι πόλοι και τα μηδενικά του φίλτρου φαίνονται στο παρακάτω διάγραμμα:
figure.block-center.width-19cm
img(src="1_low_pass/assets/diagrams/inverse_chebyshev_zero_pole.svg").width-19cm
img(src="2_band_pass/assets/diagrams/matlab_band_pass_chebyshev_zero_pole.svg").width-19cm
figcaption
.reference #[span.plot-count]
.title.
Πόλοι και μηδενικά του Chebyshev.
.caption.
Πόλοι και μηδενικά του αντίστροφου Chebyshev
Παρατηρείται ότι τα ζεύγη μιγαδικών πόλων έχουν, ανά δύο, το ίδιο Q (ίδια γωνία).
div(style="page-break-before:always")
p.
Οι πόλοι και τα μηδενικά ομαδοποιούνται όπως φαίνεται στο παρακάτω διάγραμμα:
figure.block-center
.ui.grid
.two.wide.column
.three.wide.column
.row
img(src="1_low_pass/assets/diagrams/inverse_chebyshev_unit_1_zero_pole_grouping.svg")/
.row.top-7mm
img(src="1_low_pass/assets/diagrams/low_pass_notch_unit_diagram.svg")/
.row.top-5mm
p.center #[strong Unit 1]
.six.wide.column
.three.wide.column
.row
img(src="1_low_pass/assets/diagrams/inverse_chebyshev_unit_2_zero_pole_grouping.svg")/
.row.top-7mm
img(src="1_low_pass/assets/diagrams/low_pass_notch_unit_diagram.svg")/
.row.top-5mm
p.center #[strong Unit 2]
.two.wide.column
Κάθε ζεύγος πόλων υλοποιείται από ένα κύκλωμα Deliyannis-Friend, προκύπτουν έτσι οι παρακάτω ζωνοδιαβατές μονάδες προς υλοποίηση:
figure.block-center.width-19cm
img(src="2_band_pass/assets/diagrams/band_pass_chebyshev_units_diagram.svg").width-19cm
figcaption
.reference #[span.plot-count]
.caption.
Ομαδοποίηση πόλων-μηδενικών
Μονάδες Deliyannis-Friend προς υλοποίηση
h4 Υλοποίηση συνάρτησης μεταφοράς
p.
Από τον αριθμό ΑΕΜ (8261) υποδεικνύεται η χρήση των κυκλωμάτων low pass notch του κεφαλαίου 7, με χρήση του κυκλώματος του σχήματος 7.23.
Από τον αριθμό ΑΕΜ (8261) υποδεικνύεται η χρήση των κυκλωμάτων Deliyannis-Friend του κεφαλαίου 7, με χρήση της πρώτης στατηγικής σχεδίασης (Στρατηγική 1).
h5 Μονάδα 1
p Η πρώτη μονάδα low pass notch, δεύτερης τάξης, πρέπει να υλοποιεί:
p Η πρώτη μονάδα Deliyannis-Friend, δεύτερης τάξης, πρέπει να υλοποιεί:
figure.block-center.width-15cm
table.ui.celled.table.teal.striped.center.aligned
@ -188,23 +219,16 @@ figure.block-center.width-15cm
th Τιμή
tbody
tr
td ω#[sub 0]
td 0.963
tr
td ω#[sub Z]
td 1.0824
tr
td ω#[sub Z]>ω#[sub 0]
td #[i.large.teal.checkmark.icon]
td ω#[sub 01]
td 5938.942
tr
td Q
td 0.5822
td 10.9546
figcaption
.reference #[span.table-count]
.caption.
Προδιαγραφές πρώτης μονάδας low pass notch
Προδιαγραφές πρώτης ζωνοδιαβατής μονάδας Deliyannis-Friend
div(style="page-break-before:always")
p.
Γίνεται κανονικοποίηση των συχνοτήτων ως προς το ω#[sub 0], ώστε Ω#[sub 0]=1:
@ -307,6 +331,7 @@ p.latex-equation.
&=\frac{0.3492s^2+2.1547*10^9}{s^2+120055s+4.8846*10^9}
\end{align*}$$
//- ==========================================================================================================================================================================================================================================================================================================///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////===========
h5 Μονάδα 2
p Η δεύτερη μονάδα low pass notch, δεύτερης τάξης, πρέπει να υλοποιεί:

2
report/2_band_pass/assets/diagrams/band_pass_chebyshev_units_diagram.svg

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 9.7 KiB

311
report/2_band_pass/assets/diagrams/band_pass_general_transfer_function_plot.svg

@ -0,0 +1,311 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 19.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="-176.8 307.1 224 183" style="enable-background:new -176.8 307.1 224 183;" xml:space="preserve">
<style type="text/css">
.st0{fill:none;stroke:#010101;stroke-width:0.7528;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10.0375;}
.st1{fill:#010101;}
.st2{fill:none;stroke:#010101;stroke-width:0.7528;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10.0375;stroke-dasharray:5.79,5.79;}
.st3{fill:none;stroke:#010101;stroke-width:0.7528;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10.0375;stroke-dasharray:5.9011,5.9011;}
.st4{font-family:'ArialMT';}
.st5{font-size:7.0421px;}
.st6{font-size:4.1056px;}
.st7{font-size:7.0424px;}
.st8{font-size:4.1057px;}
.st9{font-size:7.0423px;}
.st10{font-size:8px;}
</style>
<g id="page1" transform="matrix(0.996264 0 0 0.996264 0 0)">
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-286.8,76.9v159.8"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st1" d="M-286.8,65.6l-3,11.3h6.1L-286.8,65.6z"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-286.8,65.6l-3,11.3h6.1L-286.8,65.6z"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,236.8h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,221.2h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,205.6h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,190.1h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,174.5h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,159h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,143.4h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,127.9h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,112.3h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,96.7h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,81.2h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,229h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,213.4h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,197.9h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,182.3h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,166.7h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,151.2h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,135.6h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,120.1h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,104.5h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,89h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-287.8,73.4h2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-87.1,236.8h-199.7"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st1" d="M-75.8,236.8l-11.3-3v6.1L-75.8,236.8z"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-75.8,236.8l-11.3-3v6.1L-75.8,236.8z"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-286.8,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-254.3,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-221.8,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-189.4,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-156.9,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-124.5,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-92,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-270.5,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-238.1,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-205.6,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-173.2,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-140.7,235.8v2"/>
</g>
</g>
<g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-108.2,235.8v2"/>
</g>
</g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st0" d="M-286.8,236.8h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3
h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3
h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3
h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3
h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3l0.3-0.1l0.3-0.1h0.3h0.3l0.3-0.1l0.3-0.1l0.3-0.1
l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.1l0.3-0.2
l0.3-0.2l0.3-0.2l0.3-0.2l0.3-0.2l0.3-0.2l0.3-0.2l0.3-0.2l0.3-0.3l0.3-0.3l0.3-0.3l0.3-0.3l0.3-0.3l0.3-0.4l0.3-0.4l0.3-0.5
l0.3-0.5l0.3-0.5l0.3-0.6l0.3-0.7l0.3-0.7l0.3-0.7l0.3-0.8l0.3-0.9l0.3-1l0.3-1.1l0.3-1.2l0.3-1.4l0.3-1.6l0.3-1.7l0.3-1.9
l0.3-2.2l0.3-2.5l0.3-2.8l0.3-3.2l0.3-3.7l0.3-4.3l0.3-4.9l0.3-5.7l0.3-6.6l0.3-7.7l0.3-9l0.3-10.3l0.3-11.7l0.3-12.8l0.3-13.3
l0.3-12.6l0.3-10.3l0.3-6.7l0.3-2.6l0.3,1.1l0.3,3.7l0.3,5l0.3,5.5l0.3,5.3l0.3,4.9l0.3,4.4l0.3,3.7l0.3,3.1l0.3,2.6l0.3,2.1
l0.3,1.6l0.3,1.2l0.3,0.8l0.3,0.5l0.3,0.1l0.3-0.2l0.3-0.5l0.3-0.7l0.3-1l0.3-1.2l0.3-1.5l0.3-1.7l0.3-1.9l0.3-2l0.3-2.2l0.3-2.4
l0.3-2.5l0.3-2.6l0.3-2.7l0.3-2.7l0.3-2.7l0.3-2.7l0.3-2.6l0.3-2.5l0.3-2.3l0.3-2l0.3-1.7l0.3-1.4l0.3-1l0.3-0.7l0.3-0.3l0.3,0.1
l0.3,0.5l0.3,0.9l0.3,1.2l0.3,1.4l0.3,1.7l0.3,1.9l0.3,2l0.3,2.1l0.3,2.2l0.3,2.2l0.3,2.2l0.3,2.2l0.3,2.1l0.3,2.1l0.3,2l0.3,1.9
l0.3,1.8l0.3,1.7l0.3,1.6l0.3,1.5l0.3,1.4l0.3,1.3l0.3,1.2l0.3,1.1l0.3,1l0.3,0.9l0.3,0.8l0.3,0.7l0.3,0.6l0.3,0.5l0.3,0.4
l0.3,0.3l0.3,0.2l0.3,0.1h0.3l0.3-0.1l0.3-0.1l0.3-0.2l0.3-0.3l0.3-0.4l0.3-0.5l0.3-0.6l0.3-0.6l0.3-0.7l0.3-0.8l0.3-0.9l0.3-1
l0.3-1.1l0.3-1.1l0.3-1.2l0.3-1.3l0.3-1.4l0.3-1.4l0.3-1.5l0.3-1.6l0.3-1.6l0.3-1.7l0.3-1.7l0.3-1.8l0.3-1.8l0.3-1.8l0.3-1.8
l0.3-1.8l0.3-1.8l0.3-1.7l0.3-1.7l0.3-1.6l0.3-1.5l0.3-1.4l0.3-1.2l0.3-1.1l0.3-0.9l0.3-0.7l0.3-0.5l0.3-0.3h0.3l0.3,0.2l0.3,0.4
l0.3,0.6l0.3,0.8l0.3,1l0.3,1.2l0.3,1.4l0.3,1.5l0.3,1.6l0.3,1.7l0.3,1.8l0.3,1.8l0.3,1.9l0.3,1.9l0.3,1.9l0.3,1.9l0.3,1.9
l0.3,1.8l0.3,1.8l0.3,1.7l0.3,1.7l0.3,1.6l0.3,1.5l0.3,1.4l0.3,1.4l0.3,1.3l0.3,1.2l0.3,1.1l0.3,1l0.3,0.9l0.3,0.8l0.3,0.7
l0.3,0.6l0.3,0.5l0.3,0.4l0.3,0.3l0.3,0.2l0.3,0.1h0.3l0.3-0.1l0.3-0.3l0.3-0.4l0.3-0.5l0.3-0.6l0.3-0.8l0.3-0.9l0.3-1.1l0.3-1.2
l0.3-1.4l0.3-1.6l0.3-1.8l0.3-1.9l0.3-2.1l0.3-2.3l0.3-2.5l0.3-2.6l0.3-2.8l0.3-2.9l0.3-3l0.3-3l0.3-2.9l0.3-2.7l0.3-2.4l0.3-1.9
l0.3-1.3l0.3-0.4l0.3,0.6l0.3,1.7l0.3,2.8l0.3,3.9l0.3,4.9l0.3,5.6l0.3,6.2l0.3,6.5l0.3,6.7l0.3,6.7l0.3,6.5l0.3,6.3l0.3,6
l0.3,5.6l0.3,5.2l0.3,4.9l0.3,4.5l0.3,4.2l0.3,3.9l0.3,3.6l0.3,3.3l0.3,3.1l0.3,2.9l0.3,2.7l0.3,2.5l0.3,2.3l0.3,2.1l0.3,2
l0.3,1.8l0.3,1.7l0.3,1.6l0.3,1.5l0.3,1.4l0.3,1.3l0.3,1.2l0.3,1.2l0.3,1.1l0.3,1l0.3,1l0.3,0.9l0.3,0.9l0.3,0.8l0.3,0.8l0.3,0.7
l0.3,0.7l0.3,0.7l0.3,0.6l0.3,0.6l0.3,0.6l0.3,0.5l0.3,0.5l0.3,0.5l0.3,0.5l0.3,0.5l0.3,0.4l0.3,0.4l0.3,0.4l0.3,0.4l0.3,0.4
l0.3,0.3l0.3,0.3l0.3,0.3l0.3,0.3l0.3,0.3l0.3,0.3l0.3,0.3l0.3,0.3l0.3,0.3l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2
l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.2l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1
l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1
l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1l0.3,0.1
l0.3,0.1l0.3,0.1l0.3,0.1h0.3h0.3h0.3l0.3,0.1h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3
h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3
h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3h0.3
h0.3"/>
</g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st2" d="M-221.8,236.7"/>
<path class="st2" d="M-221.8,126.7"/>
</g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st2" d="M-156.9,236.7"/>
<path class="st2" d="M-156.9,126.7"/>
</g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st3" d="M-286.6,127.9h194.7"/>
</g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<path class="st3" d="M-286.8,81.2h194.7"/>
</g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<circle class="st1" cx="-227" cy="128.3" r="2.3"/>
</g>
<g transform="matrix(1 0 0 1 122.733 242.971)">
<circle class="st1" cx="-166.8" cy="128.3" r="2.3"/>
</g>
</g>
<text transform="matrix(1 0 0 1 -125.3575 458.594)" class="st4 st5">f</text>
<text transform="matrix(1 0 0 1 -123.3016 460.9388)" class="st4 st6">3</text>
<text transform="matrix(1 0 0 1 -121.1954 458.594)" class="st4 st5"></text>
<text transform="matrix(1 0 0 1 -113.8925 460.9388)" class="st4 st6">3</text>
<g id="XMLID_29_" transform="matrix(1 0 0 1 122.733 242.971)">
<circle id="XMLID_30_" class="st1" cx="-232.4" cy="221.5" r="2.3"/>
</g>
<g id="XMLID_28_" transform="matrix(1 0 0 1 122.733 242.971)">
<circle id="XMLID_31_" class="st1" cx="-154.4" cy="221.4" r="2.3"/>
</g>
<text transform="matrix(1 0 0 1 -29.3725 459.8022)" class="st4 st7">f</text>
<text transform="matrix(1 0 0 1 -27.3159 462.147)" class="st4 st8">4</text>
<text transform="matrix(1 0 0 1 -25.2104 459.8022)" class="st4 st7"></text>
<text transform="matrix(1 0 0 1 -17.9077 462.147)" class="st4 st8">4</text>
<text transform="matrix(1 0 0 1 -119.2917 365.5408)" class="st4 st9">f</text>
<text transform="matrix(1 0 0 1 -117.2352 367.8861)" class="st4 st8">1</text>
<text transform="matrix(1 0 0 1 -115.1292 365.5408)" class="st4 st9"></text>
<text transform="matrix(1 0 0 1 -107.8268 367.8861)" class="st4 st8">1</text>
<text transform="matrix(1 0 0 1 -41.2989 365.541)" class="st4 st9">f</text>
<text transform="matrix(1 0 0 1 -39.2426 367.8861)" class="st4 st8">2</text>
<text transform="matrix(1 0 0 1 -37.1368 365.541)" class="st4 st9"></text>
<text transform="matrix(1 0 0 1 -29.8345 367.8861)" class="st4 st8">2</text>
<path id="XMLID_36_" class="st3" d="M-163.4,464.7h194"/>
<text transform="matrix(1 0 0 1 -176.7756 368.3734)" class="st4 st9">α</text>
<text transform="matrix(1 0 0 1 -172.8956 370.7189)" class="st4 st8">max</text>
<text transform="matrix(1 0 0 1 -176.7756 464.5752)" class="st4 st9">α</text>
<text transform="matrix(1 0 0 1 -172.8956 466.9206)" class="st4 st8">min</text>
<text transform="matrix(1 0 0 1 -158.2385 317.6212)" class="st4 st10">Gain</text>
<text transform="matrix(1 0 0 1 4.7674 487.4474)" class="st4 st10">Frequency</text>
</svg>

After

Width:  |  Height:  |  Size: 12 KiB

178
report/2_band_pass/assets/diagrams/matlab_band_pass_chebyshev_zero_pole.svg

@ -0,0 +1,178 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 19.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="751.7 -37.6 1340.9 823.3" style="enable-background:new 751.7 -37.6 1340.9 823.3;" xml:space="preserve">
<style type="text/css">
.st0{fill:none;stroke:#262626;stroke-width:0.6667;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:0.149;}
.st1{fill:none;stroke:#262626;stroke-width:0.6667;stroke-linecap:square;stroke-linejoin:round;stroke-miterlimit:10;}
.st2{fill:#262626;}
.st3{font-family:'ArialMT';}
.st4{font-size:13px;}
.st5{font-family:'Arial-BoldMT';}
.st6{font-size:15px;}
.st7{fill:none;stroke:#000000;stroke-linejoin:round;stroke-miterlimit:10;}
.st8{font-size:11px;}
.st9{fill:none;stroke:#000000;stroke-width:0.6667;stroke-linejoin:round;stroke-miterlimit:10;}
.st10{fill:none;stroke:#000000;stroke-width:0.6667;stroke-linejoin:bevel;stroke-miterlimit:1;stroke-dasharray:10,6;}
</style>
<g>
<g>
<line class="st0" x1="2054" y1="776" x2="752" y2="776"/>
<line class="st0" x1="2054" y1="709.8" x2="752" y2="709.8"/>
<line class="st0" x1="2054" y1="643.7" x2="752" y2="643.7"/>
<line class="st0" x1="2054" y1="577.5" x2="752" y2="577.5"/>
<line class="st0" x1="2054" y1="511.3" x2="752" y2="511.3"/>
<line class="st0" x1="2054" y1="445.2" x2="752" y2="445.2"/>
<line class="st0" x1="2054" y1="312.8" x2="752" y2="312.8"/>
<line class="st0" x1="2054" y1="246.7" x2="752" y2="246.7"/>
<line class="st0" x1="2054" y1="180.5" x2="752" y2="180.5"/>
<line class="st0" x1="2054" y1="114.3" x2="752" y2="114.3"/>
<line class="st0" x1="2054" y1="48.2" x2="752" y2="48.2"/>
<line class="st0" x1="2054" y1="-18" x2="752" y2="-18"/>
<line class="st1" x1="752" y1="379" x2="2054" y2="379"/>
<line class="st1" x1="2054" y1="776" x2="2054" y2="-18"/>
<line class="st1" x1="2054" y1="776" x2="2041" y2="776"/>
<line class="st1" x1="2054" y1="709.8" x2="2041" y2="709.8"/>
<line class="st1" x1="2054" y1="643.7" x2="2041" y2="643.7"/>
<line class="st1" x1="2054" y1="577.5" x2="2041" y2="577.5"/>
<line class="st1" x1="2054" y1="511.3" x2="2041" y2="511.3"/>
<line class="st1" x1="2054" y1="445.2" x2="2041" y2="445.2"/>
<line class="st1" x1="2054" y1="312.8" x2="2041" y2="312.8"/>
<line class="st1" x1="2054" y1="246.7" x2="2041" y2="246.7"/>
<line class="st1" x1="2054" y1="180.5" x2="2041" y2="180.5"/>
<line class="st1" x1="2054" y1="114.3" x2="2041" y2="114.3"/>
<line class="st1" x1="2054" y1="48.2" x2="2041" y2="48.2"/>
<line class="st1" x1="2054" y1="-18" x2="2041" y2="-18"/>
</g>
<g transform="translate(1525.3334,867)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-6000</text>
</g>
<g transform="translate(1525.3334,800.8333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-5000</text>
</g>
<g transform="translate(1525.3334,734.6667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-4000</text>
</g>
<g transform="translate(1525.3334,668.5)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-3000</text>
</g>
<g transform="translate(1525.3334,602.3333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-2000</text>
</g>
<g transform="translate(1525.3334,536.1667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">-1000</text>
</g>
<g transform="translate(1525.3334,403.8333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">1000</text>
</g>
<g transform="translate(1525.3334,337.6667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">2000</text>
</g>
<g transform="translate(1525.3334,271.5)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">3000</text>
</g>
<g transform="translate(1525.3334,205.3333)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">4000</text>
</g>
<g transform="translate(1525.3334,139.1667)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">5000</text>
</g>
<g transform="translate(1525.3334,73)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st2 st3 st4">6000</text>
</g>
<g transform="translate(869.0008,70.25)">
<text transform="matrix(1 0 0 1 479 -95)" class="st5 st6">Zero-Poles plot</text>
</g>
<g>
<line class="st7" x1="834" y1="185" x2="841" y2="178"/>
<line class="st7" x1="834" y1="178" x2="841" y2="185"/>
<line class="st7" x1="948" y1="204" x2="955" y2="197"/>
<line class="st7" x1="948" y1="197" x2="955" y2="204"/>
<line class="st7" x1="1337" y1="12" x2="1344" y2="5"/>
<line class="st7" x1="1337" y1="5" x2="1344" y2="12"/>
<line class="st7" x1="1487" y1="90" x2="1494" y2="83"/>
<line class="st7" x1="1487" y1="83" x2="1494" y2="90"/>
<line class="st7" x1="834" y1="580" x2="841" y2="573"/>
<line class="st7" x1="834" y1="573" x2="841" y2="580"/>
<line class="st7" x1="948" y1="561" x2="955" y2="554"/>
<line class="st7" x1="948" y1="554" x2="955" y2="561"/>
<line class="st7" x1="1337" y1="753" x2="1344" y2="746"/>
<line class="st7" x1="1337" y1="746" x2="1344" y2="753"/>
<line class="st7" x1="1487" y1="675" x2="1494" y2="668"/>
<line class="st7" x1="1487" y1="668" x2="1494" y2="675"/>
<path class="st7" d="M2057.5,378.5l-0.9-2.1l-2.1-0.9l-2.1,0.9l-0.9,2.1l0.9,2.1l2.1,0.9l2.1-0.9L2057.5,378.5z"/>
<path class="st7" d="M2060.5,378.5l-0.8-3l-2.2-2.2l-3-0.8l-3,0.8l-2.2,2.2l-0.8,3l0.8,3l2.2,2.2l3,0.8l3-0.8l2.2-2.2
L2060.5,378.5z"/>
<path class="st7" d="M2063.4,378.5l-0.9-3.9l-2.5-3.1l-3.6-1.7h-4l-3.6,1.7l-2.5,3.1l-0.9,3.9l0.9,3.9l2.5,3.1l3.6,1.7h4l3.6-1.7
l2.5-3.1L2063.4,378.5z"/>
<path class="st7" d="M2066,378.5l-0.9-4.4l-2.5-3.7l-3.7-2.5l-4.4-0.9l-4.4,0.9l-3.7,2.5l-2.5,3.7l-0.9,4.4l0.9,4.4l2.5,3.7
l3.7,2.5l4.4,0.9l4.4-0.9l3.7-2.5l2.5-3.7L2066,378.5z"/>
</g>
<g transform="translate(311,266)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(322,272)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">01</text>
</g>
<g transform="translate(424,284)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(435,290)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">02</text>
</g>
<g transform="translate(813,92)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(824,98)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">03</text>
</g>
<g transform="translate(963,170)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(974,176)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">04</text>
</g>
<g transform="translate(311,680)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(322,686)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">01</text>
</g>
<g transform="translate(424,662)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(435,668)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">02</text>
</g>
<g transform="translate(813,854)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(824,860)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">03</text>
</g>
<g transform="translate(963,776)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st4">ω</text>
</g>
<g transform="translate(974,782)">
<text transform="matrix(1 0 0 1 534 -91)" class="st3 st8">04</text>
</g>
<g transform="translate(1430.0436,593.7317)">
<text transform="matrix(1 0 0 1 534 -85.5)" class="st3 st4">4 zeros</text>
</g>
<g>
<line class="st9" x1="837.8" y1="181.9" x2="837.8" y2="576.1"/>
<line class="st9" x1="1340.2" y1="8.3" x2="1340.2" y2="749.7"/>
<line class="st10" x1="2054" y1="379" x2="837.8" y2="181.9"/>
<line class="st10" x1="2054" y1="379" x2="1340.2" y2="8.3"/>
<line class="st10" x1="2054" y1="379" x2="837.8" y2="576.1"/>
<line class="st10" x1="2054" y1="379" x2="1340.2" y2="749.7"/>
<line class="st9" x1="1989.3" y1="498" x2="2046.3" y2="394.5"/>
<path class="st9" d="M2039.7,396.2l10.8-9.3l-4.2,7.6L2039.7,396.2"/>
<path class="st9" d="M2050.5,386.9l-2.1,14.1l-2.1-6.5L2050.5,386.9"/>
</g>
<g>
<path d="M2039.7,396.2l10.8-9.3l-4.2,7.6L2039.7,396.2z"/>
<path d="M2050.5,386.9l-2.1,14.1l-2.1-6.5L2050.5,386.9z"/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 8.4 KiB

Loading…
Cancel
Save