|
|
@ -12,6 +12,9 @@ char* LABELS_FILENAME = "data/L.bin"; |
|
|
|
struct timeval startwtime, endwtime; |
|
|
|
double seq_time; |
|
|
|
|
|
|
|
int meanshift(double **original_points, double ***shifted_points, int h |
|
|
|
, parameters *opt, int iteration); |
|
|
|
|
|
|
|
int main(int argc, char **argv){ |
|
|
|
int h = 1; |
|
|
|
|
|
|
@ -70,3 +73,122 @@ int main(int argc, char **argv){ |
|
|
|
//TODO write output points to file -> plot later
|
|
|
|
//save_matrix(shifted_points, iterations);
|
|
|
|
} |
|
|
|
|
|
|
|
int meanshift(double **original_points, double ***shifted_points, int h |
|
|
|
, parameters *opt, int iteration){ |
|
|
|
|
|
|
|
// allocates space and copies original points on first iteration
|
|
|
|
if (iteration == 1){ |
|
|
|
(*shifted_points) = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS); |
|
|
|
duplicate(original_points, NUMBER_OF_POINTS, DIMENSIONS, shifted_points); |
|
|
|
} |
|
|
|
|
|
|
|
// mean shift vector
|
|
|
|
double **mean_shift_vector; |
|
|
|
mean_shift_vector = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS); |
|
|
|
// initialize elements of mean_shift_vector to inf
|
|
|
|
for (int i=0;i<NUMBER_OF_POINTS;i++){ |
|
|
|
for (int j=0;j<DIMENSIONS;j++){ |
|
|
|
mean_shift_vector[i][j] = DBL_MAX; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/** allocate memory **/ |
|
|
|
double **kernel_matrix = alloc_2d_double(NUMBER_OF_POINTS, NUMBER_OF_POINTS); |
|
|
|
double *denominator = malloc(NUMBER_OF_POINTS * sizeof(double)); |
|
|
|
// create new y vector
|
|
|
|
double **new_shift = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS); |
|
|
|
|
|
|
|
|
|
|
|
double * d_kernel_matrix; |
|
|
|
cudaMalloc(&d_kernel_matrix, NUMBER_OF_POINTS * NUMBER_OF_POINTS * sizeof(double)); |
|
|
|
double * d_denominator; |
|
|
|
cudaMalloc(&d_denominator, NUMBER_OF_POINTS * sizeof(double)); |
|
|
|
double * d_new_shift; |
|
|
|
cudaMalloc(&d_new_shift, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double)); |
|
|
|
|
|
|
|
// (*shifted_points) = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
|
|
// duplicate(original_points, NUMBER_OF_POINTS, DIMENSIONS, shifted_points);
|
|
|
|
double * d_shifted_points; |
|
|
|
cudaMalloc(&d_shifted_points, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double)); |
|
|
|
|
|
|
|
// double **mean_shift_vector;
|
|
|
|
// mean_shift_vector = alloc_2d_double(NUMBER_OF_POINTS, DIMENSIONS);
|
|
|
|
double * d_mean_shift_vector; |
|
|
|
cudaMalloc(&d_mean_shift_vector, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double)); |
|
|
|
|
|
|
|
//Copy vectors from host memory to device memory
|
|
|
|
cudaMemcpy(d_shifted_points, *shifted_points, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double), |
|
|
|
cudaMemcpyHostToDevice); |
|
|
|
// y[i][j] == d_y[COLUMNS*i + j]
|
|
|
|
cudaMemcpy(d_mean_shift_vector, mean_shift_vector, NUMBER_OF_POINTS * DIMENSIONS * sizeof(double), |
|
|
|
cudaMemcpyHostToDevice); |
|
|
|
|
|
|
|
|
|
|
|
// TODO REFACTOR AS A KERNEL
|
|
|
|
// find pairwise distance matrix (inside radius)
|
|
|
|
// [I, D] = rangesearch(x,y,h);
|
|
|
|
for (int i=0; i<NUMBER_OF_POINTS; i++){ |
|
|
|
double sum = 0; |
|
|
|
for (int j=0; j<NUMBER_OF_POINTS; j++){ |
|
|
|
double dist_sum = 0; |
|
|
|
for (int p=0; p<DIMENSIONS; p++){ |
|
|
|
double dif = ((*shifted_points)[i])[p]-(original_points[j])[p]; |
|
|
|
dist_sum += dif * dif; |
|
|
|
} |
|
|
|
double dist = sqrt(dist_sum); |
|
|
|
|
|
|
|
if (dist < h*h){ |
|
|
|
kernel_matrix[i][j] = dist * dist; |
|
|
|
// compute kernel matrix
|
|
|
|
double pow = ((-1)*(kernel_matrix[i][j]))/(2*(h*h)); |
|
|
|
kernel_matrix[i][j] = exp(pow); |
|
|
|
} else { |
|
|
|
kernel_matrix[i][j] = 0; |
|
|
|
} |
|
|
|
if (i==j){ |
|
|
|
kernel_matrix[i][j] += 1; |
|
|
|
} |
|
|
|
sum = sum + kernel_matrix[i][j]; |
|
|
|
} |
|
|
|
denominator[i] = sum; |
|
|
|
|
|
|
|
// build nominator
|
|
|
|
for (int j=0; j<DIMENSIONS; j++){ |
|
|
|
new_shift[i][j] = 0; |
|
|
|
for (int k=0; k<NUMBER_OF_POINTS; k++){ |
|
|
|
new_shift[i][j] += kernel_matrix[i][k] * original_points[k][j]; |
|
|
|
} |
|
|
|
// divide element-wise
|
|
|
|
new_shift[i][j] = new_shift[i][j] / denominator[i]; |
|
|
|
// calculate mean-shift vector at the same time
|
|
|
|
mean_shift_vector[i][j] = new_shift[i][j] - (*shifted_points)[i][j]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// frees previously shifted points, they're now garbage
|
|
|
|
free((*shifted_points)[0]); |
|
|
|
// updates shifted points pointer to the new array address
|
|
|
|
shifted_points = &new_shift; |
|
|
|
|
|
|
|
save_matrix((*shifted_points), iteration); |
|
|
|
|
|
|
|
double current_norm = norm(mean_shift_vector, NUMBER_OF_POINTS, DIMENSIONS); |
|
|
|
printf("Iteration n. %d, error %f \n", iteration, current_norm); |
|
|
|
|
|
|
|
// clean up this iteration's allocates
|
|
|
|
free(mean_shift_vector[0]); |
|
|
|
free(mean_shift_vector); |
|
|
|
free(kernel_matrix[0]); |
|
|
|
free(kernel_matrix); |
|
|
|
free(denominator); |
|
|
|
|
|
|
|
/** iterate until convergence **/ |
|
|
|
if (current_norm > opt->epsilon) { |
|
|
|
return meanshift(original_points, shifted_points, h, opt, ++iteration); |
|
|
|
} |
|
|
|
|
|
|
|
return iteration; |
|
|
|
} |