Browse Source

Rebase serial implementation, Add header file for serial, Add dataset, Add matlab package

master
Apostolos Fanakis 6 years ago
parent
commit
ddbda84923
  1. 1800
      datasets/toronto_death_penalty_refined_adj
  2. BIN
      matlab/package/cs-stanford.mat
  3. 893
      matlab/package/pagerank.m
  4. 109
      matlab/package/pagerank_gs_mult.c
  5. BIN
      matlab/package/pagerank_gs_mult.mexa64
  6. BIN
      matlab/package/pagerank_gs_mult.mexglx
  7. 128
      matlab/package/pagerank_mult.c
  8. BIN
      matlab/package/pagerank_mult.mexa64
  9. BIN
      matlab/package/pagerank_mult.mexglx
  10. 78
      matlab/package/spmatvec_mult.c
  11. BIN
      matlab/package/spmatvec_mult.mexa64
  12. BIN
      matlab/package/spmatvec_mult.mexglx
  13. 82
      matlab/package/spmatvec_transmult.c
  14. BIN
      matlab/package/spmatvec_transmult.mexa64
  15. BIN
      matlab/package/spmatvec_transmult.mexglx
  16. 88
      serial.c
  17. 36
      serial/Makefile
  18. BIN
      serial/pagerank
  19. 32
      serial/serial_gs_pagerank.c
  20. 286
      serial/serial_gs_pagerank_functions.c
  21. 75
      serial/serial_gs_pagerank_functions.h

1800
datasets/toronto_death_penalty_refined_adj

File diff suppressed because it is too large

BIN
matlab/package/cs-stanford.mat

Binary file not shown.

893
matlab/package/pagerank.m

@ -0,0 +1,893 @@
function [x flag hist dt] = pagerank(A,optionsu)
% PAGERANK Compute the PageRank for a directed graph.
%
% [p flag hist dt] = pagerank(A)
%
% Compute the pagerank vector p for the directed graph A, with
% teleportation probability (1-c).
%
% flag is 1 if the method converged; hist returns the convergence history
% and dt is the total time spent solving the system
%
% The matrix A should have the outlinks represented in the rows.
%
% This driver can compute PageRank using 4 different algorithms,
% the default algorithm is the Arnoldi iteration for PageRank due to
% Grief and Golub. Other algorithms include gauss-seidel iterations,
% power iterations, a linear system formulation, or an approximate
% PageRank formulation.
%
% The output p satisfies p = c A'*D^{+} p + c d'*p v + (1-c) v and
% norm(p,1) = 1.
%
% The power method solves the eigensystem x = P''^T x.
% The linear system solves the system (I-cP^T)x = (1-c)v.
% The dense method uses "\" on I-cP^T which the LU factorization.
%
% To specify a different solver for the linear system, use an anonymous
% function wrapper around one of Matlab's solver calls. To use GMRES,
% call pagerank(..., struct('linsolver', ...
% @(f,v,tol,its) gmres(f,v,[],tol, its)))
%
% Note 1: the 'approx' algorithm is the PageRank approximate personalized
% PageRank algorithm due to Gleich and Polito. It creates a set of
% active pages and runs until either norm(p(boundary),1) < options.bp or
% norm(p(boundary),inf) < options.bp, where the boundary is defined as
% the set of pages that have a non-zero personalized PageRank but are not
% in the set of active pages. As options.bp -> 0, both of these
% approximations compute the actual personalized PageRank vector.
%
% Note 2: the 'eval' algorithm evaluates five algorithms to compute the
% PageRank vector and summarizes the results in a report. The return
% from the algorithm are a set of cell arrays where
% p = cell(5,1), flag = cell(5,1), hist = cell(5,1), dt = cell(5,1)
% and each cell contains the result from one algorithm.
% p{1} is the vector computed from the 'power' algorithm
% p{2} is the vector computed from the 'gs' algorithm
% p{3} is the vector computed from the 'arnoldi' algorithm
% p{4} is the vector computed from the 'linsys' algorithm with bicgstab
% p{5} is the vector comptued from the 'linsys' algorithm with gmres
% the other outputs all match these indices.
%
% pagerank(A,options) specifies optional parameters
% options.c: the teleportation coefficient [double | {0.85}]
% options.tol: the stopping tolerance [double | {1e-7}]
% options.v: the personalization vector [vector | {uniform: 1/n}]
% options.maxiter maximum number of iterations [integer | {500}]
% options.verbose: extra output information [{0} | 1]
% options.x0: the initial vector [vector | {options.v}]
% options.alg: force the algorithm type
% ['gs' | 'power' | 'linsys' | 'dense' | {'arnoldi'} | ...
% 'approx' | 'eval']
%
% options.linsys_solver: a function handle for the linear solver used
% with the linsys option [fh | {@(f,v,tol,its) bicgstab(f,v,tol,its)}]
% options.arnoldi_k: use a k dimensional arnoldi basis [intger | {8}]
% options.approx_bp: boundary probability to expand [float | 1e-3]
% options.approx_boundary: when to expand on the boundary [1 | {inf}]
% options.approx_subiter: number of subiterations of power iterations
% [integer | {5}]
%
% Example:
% load cs-stanford;
% p = pagerank(A);
% p = pagerank(A,struct('alg','linsys',...
% 'linsys_solver',@(f,v,tol,its) gmres(f,v,[],tol, its)));
% pagerank(A,struct('alg','eval'));
%
% pagerank.m
% David Gleich
%
%
% 21 February 2006
% -- added approximate PageRank
%
% Revision 1.10
% 28 January 2006
% -- added different computational modes and timing information
%
% Revision 1.00
% 19 Octoboer 2005
%
%
% The driver does mainly parameter checking, then sends things off to one
% of the computational routines.
%
[m n] = size(A);
if (m ~= n)
error('pagerank:invalidParameter', 'the matrix A must be square');
end;
options = struct('tol', 1e-7, 'maxiter', 500, 'v', ones(n,1)./n, ...
'c', 0.85, 'verbose', 0, 'alg', 'arnoldi', ...
'linsys_solver', @(f,v,tol,its) bicgstab(f,v,tol,its), ...
'arnoldi_k', 8, 'approx_bp', 1e-3, 'approx_boundary', inf,...
'approx_subiter', 5);
if (nargin > 1)
options = merge_structs(optionsu, options);
end;
if (size(options.v) ~= size(A,1))
error('pagerank:invalidParameter', ...
'the vector v must have the same size as A');
end;
if (~issparse(A))
A = sparse(A);
end;
% normalize the matrix
P = normout(A);
switch (options.alg)
case 'dense'
[x flag hist dt] = pagerank_dense(P, options);
case 'linsys'
[x flag hist dt] = pagerank_linsys(P, options);
case 'gs'
[x flag hist dt] = pagerank_gs(P, options);
case 'power'
[x flag hist dt] = pagerank_power(P, options);
case 'arnoldi'
[x flag hist dt] = pagerank_arnoldi(P, options);
case 'approx'
[x flag hist dt] = pagerank_approx(P, options);
case 'eval'
[x flag hist dt] = pagerank_eval(P, options);
otherwise
error('pagerank:invalidParameter', ...
'invalid computation mode specified.');
end;
% ===================================
% pagerank_linsys
% ===================================
function [x flag hist dt] = pagerank_linsys(P, options)
if (options.verbose > 0)
fprintf('linear system computation...\n');
end;
tol = options.tol;
v = options.v;
maxiter = options.maxiter;
c = options.c;
solver = options.linsys_solver;
% transpose P (see pagerank_linsys_mult docs)
P = P';
f = @(x,varargin) pagerank_linsys_mult(x,P,c,length(varargin));
tic;
[x flag ignore1 ignore2 hist] = solver(f,v,tol,maxiter);
dt = toc;
% renormalize the vector to have norm 1
x = x./norm(x,1);
function y = pagerank_linsys_mult(x,P,c,tflag)
% compute the matrix vector product for the linear system. This function
% includes the transpose flag (tflag > 0) to indicate a transpose multiply.
% Because many of the algorithms just use A*x (and not A'*x) the matrix P
% should have already been transposed.
if (tflag > 0)
%y = x - c*P'*x;
y = x - c*spmatvec_transmult(P,x);
else
%y = x - c*P*x;
y = x - c*spmatvec_mult(P,x);
end;
% ===================================
% pagerank_dense
% ===================================
function [x flag hist dt] = pagerank_dense(P, options)
% solve as a dense linear system
if (options.verbose > 0)
fprintf('dense computation...\n');
end;
v = options.v;
c = options.c;
n = size(P,1);
P = eye(n) - c*full(P)';
tic;
x = P \ v;
dt = toc;
hist = norm(P*x - v,1);
flag = 0;
% renormalize the vector to have norm 1
x = x./norm(x,1);
% ===================================
% pagerank_gs
% ===================================
function [x flag hist dt] = pagerank_gs(P, options)
% use gauss-seidel computation
if (options.verbose > 0)
fprintf('gauss-seidel computation...\n');
end;
tol = options.tol;
v = options.v;
maxiter = options.maxiter;
c = options.c;
x = v;
if (isfield(options, 'x0'))
x = options.x0;
else
% this is dumb, but we need to make sure
% we actually get x it's own memory...
% right now, Matlab just has a ``shadow copy''
x(1) = x(1)-1.0;
x(1) = x(1)+1.0;
end;
delta = 1;
iter = 0;
P = -c*P;
hist = zeros(maxiter,1);
dt = 0;
while (delta > tol && iter < maxiter)
tic;
xold = pagerank_gs_mult(P,x,(1-c)*v);
dt = dt + toc;
delta = norm(x - xold,1);
hist(iter+1) = delta;
if (options.verbose > 0)
fprintf('iter=%d; delta=%f\n', iter, delta);
end;
iter = iter + 1;
end;
% resize hist
hist = hist(1:iter);
% renormalize the vector to have norm 1
x = x./norm(x,1);
% default is convergence
flag = 0;
if (delta > tol && iter == maxiter)
warning('pagerank:didNotConverge', ...
'The PageRank algorithm did not converge after %i iterations', ...
maxiter);
flag = 1;
end;
% ===================================
% pagerank_power
% ===================================
function [x flag hist dt] = pagerank_power(P, options)
% use the power iteration algorithm
if (options.verbose > 0)
fprintf('power iteration computation...\n');
end;
tol = options.tol;
v = options.v;
maxiter = options.maxiter;
c = options.c;
x = v;
if (isfield(options, 'x0'))
x = options.x0;
end;
hist = zeros(maxiter,1);
delta = 1;
iter = 0;
dt = 0;
while (delta > tol && iter < maxiter)
tic;
y =c* spmatvec_transmult(P,x);
w = 1 - norm(y,1);
y = y + w*v;
dt = dt + toc;
delta = norm(x - y,1);
hist(iter+1) = delta;
tic;
x = y;
dt = dt + toc;
if (options.verbose > 0)
fprintf('iter=%d; delta=%f\n', iter, delta);
end;
iter = iter + 1;
end;
% resize hist
hist = hist(1:iter);
flag = 0;
if (delta > tol && iter == maxiter)
warning('pagerank:didNotConverge', ...
'The PageRank algorithm did not converge after %i iterations', ...
maxiter);
flag = 1;
end;
% ===================================
% pagerank_arnoldi
% ===================================
function [x flag hist dt] = pagerank_arnoldi(P, options)
% use the power iteration algorithm
if (options.verbose > 0)
fprintf('arnoldi method computation...\n');
end;
tol = options.tol;
v = options.v;
maxiter = options.maxiter;
c = options.c;
k = options.arnoldi_k;
x = v;
if (isfield(options, 'x0'))
x = options.x0;
end;
hist = zeros(maxiter,1);
d = dangling(P);
d = double(d);
P = P';
%f = @(x) pagerank_arnoldi_mult(x,P,c,d,v);
f = @(x) pagerank_mult(x,P,c,d,v);
iter = 0;
dt = 0;
delta = 1;
while (delta > tol && iter < maxiter)
tic;
[Q H] = pagerank_arnoldi_fact(f,x,k);
[u,s,v]=svd(H-[speye(k);zeros(1,k)]);
x=Q(:,1:k)*v(:,k);
dt = dt + toc;
% for statistics purposes only
delta=norm(f(x)-x,1)/norm(x,1);
hist(iter+1) = delta;
if (options.verbose > 0)
fprintf('iter=%d; delta=%f\n', iter, delta);
end;
iter = iter + 1;
end;
% ensure correct normalization
x = sign(sum(x))*x;
x = x/norm(x,1);
% resize hist
hist = hist(1:iter);
flag = 0;
if (delta > tol && iter == maxiter)
warning('pagerank:didNotConverge', ...
'The PageRank algorithm did not converge after %i iterations', ...
maxiter);
flag = 1;
end;
function [V,H] = pagerank_arnoldi_fact(A,V,k)
% [Q,H] = ARNOLDI7(A,Q0,K,c,d,e,v)
%
% ARNOLDI: Reduce an n x n matrix A to upper Hessenberg form.
% [Q,H] = ARNOLDI(A,Q0,K) computes (k+1) x k upper
% Hessenberg matrix H and n x k matrix Q with orthonormal
% columns and Q(:,1) = Q0/NORM(Q0), such that
% Q(:,1:k+1)'*A*Q(:,1:k) = H.
%
% A can also be a function_handle to return A*x
%
%
% Written by Chen Grief
% modified by David Gleich
%
V(:,1) = V(:,1)/norm(V(:,1));
if (~isa(A,'function_handle'))
f = @(x) A*x;
A = f;
end;
w = A(V(:,1));
alpha=V(:,1)'*w;
H(1,1)=alpha;
f(:,1)=w-V(:,1)*alpha;
for j=1:k-1
beta=norm(f(:,j));
V(:,j+1)=f(:,j)/beta;
ejt=[zeros(1,j-1) beta];
Hhat=[H; ejt];
w=A(V(:,j+1));
h=V(:,1:j+1)'*w;
f(:,j+1)=w-V(:,1:j+1)*h;
H=[Hhat h];
end
% Extend Arnoldi factorization
beta=norm(f(:,k));
V(:,k+1) = f(:,k)/beta;
ejt=[zeros(1,k-1) beta];
H=[H ;ejt];
% ===================================
% pagerank_approx
% ===================================
function [x flag hist dt] = pagerank_approx(A, options)
% use the power iteration algorithm
if (options.verbose > 0)
fprintf('approximate computation...\n');
end;
tol = options.tol;
v = options.v;
maxiter = options.maxiter;
c = options.c;
bp = options.approx_bp;
subiter = options.approx_subiter;
boundary = options.approx_boundary;
n = size(A,1);
%x = v;
%if (isfield(options, 'x0'))
% x = options.x0;
%end;
if (length(find(v)) ~= n)
global_pr = 0;
else
global_pr = 1;
error('pagerank:invalidParameter',...
'approximation computations are not implemented for global pagerank yet');
end;
hist = zeros(maxiter,1);
delta = 1;
iter = 0;
dt = 0;
% set the initial set of seed pages
if (global_pr)
if (isfield(options, 'x0'))
% the seed pages come from the x0 vector if provided
p = find(options.x0);
x = x0(p);
else
% the seed pages come from the x0 vector (otherwise, choose random)
p = unique(ceil(rand(250,1)*size(P,1)));
x = ones(length(p),1)./length(p);
end;
else
% the seed pages come from the x0 vector
p = find(v);
x = ones(length(p),1)./length(p);
v = v(p);
end;
local = [];
active = p;
frontier = p;
tic;
while (iter <= maxiter && delta > tol)
% expand all pages
if (boundary == 1)
% if we are running the boundary algorithm...
[ignore sp] = sort(-x);
cs = cumsum(x(sp));
spactive = active(sp);
allexpand_ind = cs < (1-bp);
% actually, we need to add the first 0 after the last 1 in
% allexpand_ind because we need cumsum to be larger than 1-bp
allexpand_ind(min(find(allexpand_ind == 0))) = ~0;
allexpand = spactive(allexpand_ind);
toexpand = setdiff(allexpand,local);
else
%
% otherwise, just expand all pages with a sufficient tolerance
%
allexpand = active(x > bp);
toexpand = setdiff(allexpand,local);
end;
if (length(toexpand) > 0)
xp = zeros(n,1);
xp([local frontier]) = x;
local = [local toexpand];
frontier = setdiff(find(sum(A(local,:),1)), local);
active = [local frontier];
x = xp(local);
else
xp = zeros(n,1);
xp([local frontier]) = x;
x = xp(local);
end;
Lp = A(local,active);
outdegree = full(sum(Lp,2));
outdegree = [outdegree; zeros(length(frontier),1)];
siter = 0;
L = [Lp; sparse(length(frontier),length(active))];
x2 = [x; xp(frontier)];
while (siter < subiter)
y = full(c*L'*(invzero(outdegree).*x2));
omega = 1 - norm(y,1);
% the ordering of local is preseved, so these are always the
% correct vertices
y(1:length(p)) = y(1:length(p)) + omega*v;
x2 = y;
siter = siter+1;
end;
x2 = [x; xp(frontier)];
delta = norm(y-x2,1);
hist(iter+1) = delta;
if (options.verbose > 0)
fprintf('iter=%02i; delta=%0.03e expand=%i\n', iter, delta, length(toexpand));
end
x = y;
iter = iter + 1;
end;
dt = toc;
% resize hist
hist = hist(1:iter);
xpartial = x;
x = zeros(n,1);
x([local frontier]) = xpartial;
flag = 0;
if (delta > tol && iter == maxiter)
warning('pagerank:didNotConverge', ...
'The PageRank algorithm did not converge after %i iterations', ...
maxiter);
flag = 1;
end;
no% ===================================
% pagerank_eval
% ===================================
function [x flag hist dt] = pagerank_eval(P,options)
algs = {'power', 'gs', 'arnoldi', 'linsys', 'linsys'};
extra_opts = {struct(''), struct(''), struct(''), struct(''), ...
struct('linsys_solver',@(f,v,tol,its) gmres(f,v,8,tol, its))};
names = {'power', 'gs', 'arnoldi8', 'bicgstab', 'gmres8'};
v = options.v;
c = options.c;
x = cell(5,1);
flag = cell(5,1);
hist = cell(5,1);
dt = cell(5,1);
web('text://<html><body>Generating PageRank report...</body></html>','-noaddressbox');
htmlend = '</body></html>';
s = {};
s{1} = '<html><head><title>PageRank runtime report</title></head><body><h1>PageRank Report</h1>';
stemp = s;
stemp{end+1} = '<p>Generating graph statistics...</p>';
stemp{end+1} = htmlend;
A = spones(P);
d = dangling(P);
npages = size(P,1);
nedges = nnz(P);
ndangling = sum(d);
maxindeg = full(max(sum(A,1)));
maxoutdeg = full(max(sum(A,2)));
ncomp = components(A);
s{end+1} = '<h2>Graph statistics</h2>';
s{end+1} = '<table border="0" cellspacing="4">';
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of pages', npages);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of edges', nedges);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of dangling nodes', ndangling);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Max in-degree', maxindeg);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Max out-degree', maxoutdeg);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of strong components:', ncomp);
s{end+1} = '</table>';
sOut = [stemp{:}];
web(['text://' sOut],'-noaddressbox');
s{end+1} = '<h2>Algorithm performance</h2>';
s{end+1} = '<table border="0">';
s{end+1} = sprintf('<tr><td style="text-align: right">%s</td><td>%0.3f</td></tr>', ...
'c = ', c);
s{end+1} = sprintf('<tr><td style="text-align: right">%s</td><td>%2.2e</td></tr>', ...
'tol = ', options.tol);
s{end+1} = sprintf('<tr><td style="text-align: right">%s</td><td>%i</td></tr>', ...
'maxiter = ', options.maxiter);
s{end+1} = '</table>';
s{end+1} = '<table border="0">';
s{end+1} = ['<tr style="text-align: left">' ...
'<th style="border-bottom:solid 1px">Algorithm</th>' ...
'<th style="border-bottom:solid 1px">Time</th>' ...
'<th style="border-bottom:solid 1px">Iterations</th>' ...
'<th style="border-bottom:solid 1px">Error</th></tr>'];
for (ii=1:length(algs))
alg = algs{ii};
extra_opt = extra_opts{ii};
name = names{ii};
stemp = s;
stemp{end+1} = '</table>';
stemp{end+1} = sprintf('<p>Solving for PageRank with %s...</p>', char(name));
stemp{end+1} = htmlend;
sOut = [stemp{:}];
web(['text://' sOut],'-noaddressbox');
extra_opt = merge_structs(struct('alg',char(alg)),extra_opt);
[pi flagi histi dti] = pagerank(P, merge_structs(extra_opt,options));
p{ii} = pi;
flag{ii} = flagi;
hist{ii} = histi;
dt{ii} = dti;
err = norm(pi - c*(pi'*P)' - c*(d'*pi)*v - (1-c)*v,1);
if (mod(ii,2) == 0)
s{end+1} = sprintf('<tr style="background-color: #cccccc"><td>%s</td><td>%.2f</td><td>%i</td><td>%2.2e</td></tr>',...
char(name), dti, length(histi), err);
else
s{end+1} = sprintf('<tr><td>%s</td><td>%.2f</td><td>%i</td><td>%2.2e</td></tr>',...
char(name), dti, length(histi), err);
end;
end
s{end+1} = '</table>';
s{end+1} = htmlend;
sOut = [s{:}];
web(['text://' sOut],'-noaddressbox');
s{end+1} = sprintf('<tr><td>%s</td><td></td><td></td><td></td></tr>',char(name));
%
% plot the time histogram
%
figure(1);
close(1);
figure(1);
dts = cell2mat(dt);
flags = cell2mat(flag);
h2 = bar(dts.*(flags==0));
set(h2,'FaceColor',[1 1 1]);
set(h2,'LineWidth',2.0);
set(gca,'XTick', 1:length(algs));
set(gca,'XTickLabel',names);
ylabel('time (sec)');
%
% plot the history results
%
figure(2);
close(2);
figure(2);
lso = get(0,'DefaultAxesLineStyleOrder');
lsc = get(0,'DefaultAxesColorOrder');
lso = {'o-', 'x:', '+-.', 's--', 'd-'};
nlso = length(lso);
curlso = 0;
nlsc = length(lsc);
curlsc = 0;
for ii=1:length(algs)
histi = hist{ii};
%legendname = fn{ii};
%line(1:length(mrval.hist), mrval.hist);
semilogy(1:length(histi),histi,...
lso{mod(curlso,nlso)+1}, ...
'Color',lsc(mod(curlsc,nlsc)+1,:),...
'MarkerSize',3);
hold on;
curlso = curlso+1;
curlsc = curlsc+1;
end;
title('PageRank algorithm convergence (WARNING: DIFFERENT Y-SCALES)');
xlabel('iteration')';
ylabel('convergence measure');
legend(names{:});
function S = merge_structs(A, B)
% MERGE_STRUCTS Merge two structures.
%
% S = merge_structs(A, B) makes the structure S have all the fields from A
% and B. Conflicts are resolved by using the value in A.
%
%
% merge_structs.m
% David Gleich
%
% Revision 1.00
% 19 Octoboer 2005
%
S = A;
fn = fieldnames(B);
for ii = 1:length(fn)
if (~isfield(A, fn{ii}))
S.(fn{ii}) = B.(fn{ii});
end;
end;
function P = normout(A)
% NORMOUT Normalize the outdegrees of the matrix A.
%
% P = normout(A)
%
% P has the same non-zero structure as A, but is normalized such that the
% sum of each row is 1, assuming that A has non-negative entries.
%
%
% normout.m
% David Gleich
%
% Revision 1.00
% 19 Octoboer 2005
%
% compute the row-sums/degrees
d = full(sum(A,2));
% invert the non-zeros in the data
id = invzero(d);
% scale the rows of the matrix
P = diag(sparse(id))*A;
function v = invzero(v)
% INVZERO Compute the inverse elements of a vector with zero entries.
%
% iv = invzero(v)
%
% iv is 1./v except where v = 0, in which case it is 0.
%
%
% invzero.m
% David Gleich
%
% Revision 1.00
% 19 Octoboer 2005
%
% sparse input are easy to handle
if (issparse(v))
[m n] = size(v);
[i j val] = find(v);
val = 1./val;
v = sparse(i,j,val,m,n);
return;
end;
% so are dense input
% compute the 0 mask
zm = abs(v) > eps(1);
% invert all non-zeros
v(zm) = 1./v(zm);
function dmask = dangling(A)
% DANGLING Compute the indicator vector for dangling links for webgraph A
%
% d = dangling(A)
%
d = full(sum(A,2));
dmask = d == 0;
function [k,sizes]=components(A)
% based on components.m from (MESHPART Toolkit)
% which had
% John Gilbert, Xerox PARC, 8 June 1992.
% Copyright (c) 1990-1996 by Xerox Corporation. All rights reserved.
% HELP COPYRIGHT for complete copyright and licensing notice
[p,p,r,r] = dmperm(A|speye(size(A)));
sizes = diff(r);
k = length(sizes);

109
matlab/package/pagerank_gs_mult.c

@ -0,0 +1,109 @@
/*
* =============================================================
* pagerank_gs_mult.c Compute the matrix vector multiplication
* for the gauss seidel iteration in an efficient manner
* (that is, by overwriting the vector x in place.)
*
* David Gleich
* Stanford University
* 28 January 2006
* =============================================================
*/
#include "mex.h"
/*
* The mex function just computes one matrix-vector product.
*/
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int i, j, k;
int n, mrows, ncols;
/* sparse matrix */
int A_nz;
int *A_row, *A_col;
double *A_val;
double *x, *b;
double *xold;
if (nrhs != 3)
{
mexErrMsgTxt("Three inputs required.");
}
else if (nlhs > 1)
{
mexErrMsgTxt("Too many output arguments");
}
mrows = mxGetM(prhs[0]);
ncols = mxGetN(prhs[0]);
if (mrows != ncols ||
!mxIsSparse(prhs[0]) ||
!mxIsDouble(prhs[0]) ||
mxIsComplex(prhs[0]))
{
mexErrMsgTxt("Input must be a noncomplex square sparse matrix.");
}
/* okay, the first input passes */
n = mrows;
/* The second input must be a vector. */
if (mxGetM(prhs[1])*mxGetN(prhs[1]) != n ||
mxIsSparse(prhs[1]) || !mxIsDouble(prhs[1]))
{
mexErrMsgTxt("Invalid vector.");
}
/* The third input must be a vector. */
if (mxGetM(prhs[2])*mxGetN(prhs[2]) != n ||
mxIsSparse(prhs[2]) || !mxIsDouble(prhs[2]))
{
mexErrMsgTxt("Invalid vector.");
}
/* Get the sparse matrix */
A_nz = mxGetNzmax(prhs[0]);
A_val = mxGetPr(prhs[0]);
A_row = mxGetIr(prhs[0]);
A_col = mxGetJc(prhs[0]);
/* Get the vector x */
x = mxGetPr(prhs[1]);
/* Get the vector b */
b = mxGetPr(prhs[2]);
/* if they request x old, then we need to copy x to xold */
if (nlhs > 0)
{
plhs[0] = mxDuplicateArray(prhs[1]);
}
/* Update x in place, this means we have to iterate over columns
* of the matrix A. */
for (i = 0; i < n; i++)
{
/* we actually compute one iteration for the
* system (I+A')x = b */
double aself = 1.0;
double xnew = b[i];
for (j = A_col[i]; j < A_col[i+1]; ++j)
{
/* add to aself only if the row = i (the column) */
aself += A_val[j]*(A_row[j] == i);
/* add to xnew only if row != i */
xnew -= A_val[j]*x[A_row[j]]*(A_row[j] != i);
}
x[i] = xnew/aself;
}
}

BIN
matlab/package/pagerank_gs_mult.mexa64

Binary file not shown.

BIN
matlab/package/pagerank_gs_mult.mexglx

Binary file not shown.

128
matlab/package/pagerank_mult.c

@ -0,0 +1,128 @@
/*
* =============================================================
* pagerank_mult.c Compute the matrix vector multiplication
* between the PageRank matrix and a vector
*
* David Gleich
* Stanford University
* 14 February 2006
* =============================================================
*/
#include "mex.h"
/*
* The mex function just computes one matrix-vector product.
*
* function y = pagerank_mult(x,Pt,c,d,v)
* y = c*Pt*x + (c*(d'*x))*v + (1-c)*sum(x)*v;
*/
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int i, j, k;
int n, mrows, ncols;
/* sparse matrix */
int *A_row, *A_col;
double *A_val;
double *x, *d, *v;
double c;
double *y;
double sum_x;
double dtx;
double xval;
if (nrhs != 5)
{
mexErrMsgTxt("5 inputs required.");
}
else if (nlhs > 1)
{
mexErrMsgTxt("Too many output arguments");
}
mrows = mxGetM(prhs[1]);
ncols = mxGetN(prhs[1]);
if (mrows != ncols ||
!mxIsSparse(prhs[1]) ||
!mxIsDouble(prhs[1]) ||
mxIsComplex(prhs[1]))
{
mexErrMsgTxt("Input must be a noncomplex square sparse matrix.");
}
/* okay, the second input passes */
n = mrows;
/* The first input must be a vector. */
if (mxGetM(prhs[0])*mxGetN(prhs[0]) != n ||
mxIsSparse(prhs[0]) || !mxIsDouble(prhs[0]))
{
mexErrMsgTxt("Invalid vector 1.");
}
/* The third input must be a scalar. */
if (mxGetM(prhs[2])*mxGetN(prhs[2]) != 1 || !mxIsDouble(prhs[0]))
{
mxErrMsgTxt("Invalid scalar 3.");
}
/* The fourth input must be a scalar. */
if (mxGetM(prhs[3])*mxGetN(prhs[3]) != n ||
mxIsSparse(prhs[3]) || !mxIsDouble(prhs[3]))
{
mexErrMsgTxt("Invalid vector 4.");
}
/* The fifth input must be a scalar. */
if (mxGetM(prhs[4])*mxGetN(prhs[4]) != n ||
mxIsSparse(prhs[4]) || !mxIsDouble(prhs[4]))
{
mexErrMsgTxt("Invalid vector 5.");
}
/* Get the sparse matrix */
A_val = mxGetPr(prhs[1]);
A_row = mxGetIr(prhs[1]);
A_col = mxGetJc(prhs[1]);
/* Get the vector x */
x = mxGetPr(prhs[0]);
/* Get the vector d */
d = mxGetPr(prhs[3]);
/* Get the vector v */
v = mxGetPr(prhs[4]);
c = mxGetScalar(prhs[2]);
plhs[0] = mxCreateDoubleMatrix(n,1,mxREAL);
y = mxGetPr(plhs[0]);
sum_x = 0.0;
dtx = 0.0;
for (i = 0; i < n; i++)
{
xval = x[i];
sum_x += xval;
dtx += d[i]*xval;
for (j = A_col[i]; j < A_col[i+1]; ++j)
{
y[A_row[j]] += c*A_val[j]*xval;
}
}
xval = c*dtx + (1-c)*sum_x;
for (i=0; i < n;i++)
{
y[i] += xval*v[i];
}
}

BIN
matlab/package/pagerank_mult.mexa64

Binary file not shown.

BIN
matlab/package/pagerank_mult.mexglx

Binary file not shown.

78
matlab/package/spmatvec_mult.c

@ -0,0 +1,78 @@
/*
* ==============================================================
* spmatvec_mult.c Compute a sparse matrix vector multiplication
*
* David Gleich
* 14 February 2006
* =============================================================
*/
#include "mex.h"
/*
* The mex function just computes one matrix-vector product.
*
* function y = A*x;
*/
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int i, j, k;
int mrows, ncols;
/* sparse matrix */
int *A_row, *A_col;
double *A_val;
double *x;
double *y;
double xval;
if (nrhs != 2)
{
mexErrMsgTxt("2 inputs required.");
}
else if (nlhs > 1)
{
mexErrMsgTxt("Too many output arguments");
}
mrows = mxGetM(prhs[0]);
ncols = mxGetN(prhs[0]);
if (!mxIsSparse(prhs[0]) ||
!mxIsDouble(prhs[0]) ||
mxIsComplex(prhs[0]))
{
mexErrMsgTxt("Input must be a noncomplex sparse matrix.");
}
/* The first input must be a vector. */
if (mxGetM(prhs[1])*mxGetN(prhs[1]) != ncols ||
mxIsSparse(prhs[1]) || !mxIsDouble(prhs[1]))
{
mexErrMsgTxt("Invalid vector.");
}
/* Get the sparse matrix */
A_val = mxGetPr(prhs[0]);
A_row = mxGetIr(prhs[0]);
A_col = mxGetJc(prhs[0]);
/* Get the vector x */
x = mxGetPr(prhs[1]);
plhs[0] = mxCreateDoubleMatrix(mrows,1,mxREAL);
y = mxGetPr(plhs[0]);
for (i = 0; i < ncols; i++)
{
xval = x[i];
for (j = A_col[i]; j < A_col[i+1]; ++j)
{
y[A_row[j]] += A_val[j]*xval;
}
}
}

BIN
matlab/package/spmatvec_mult.mexa64

Binary file not shown.

BIN
matlab/package/spmatvec_mult.mexglx

Binary file not shown.

82
matlab/package/spmatvec_transmult.c

@ -0,0 +1,82 @@
/*
* =============================================================
* spmatvec_mult.c Compute a sparse matrix vector multiplication
* using a transposed matrix.
*
* David Gleich
* Stanford University
* 14 February 2006
* =============================================================
*/
#include "mex.h"
/*
* The mex function just computes one matrix-vector product.
*
* function y = A'*x
*/
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int i, j, k;
int mrows, ncols;
/* sparse matrix */
int *A_row, *A_col;
double *A_val;
double *x;
double *y;
double yval;
if (nrhs != 2)
{
mexErrMsgTxt("2 inputs required.");
}
else if (nlhs > 1)
{
mexErrMsgTxt("Too many output arguments");
}
mrows = mxGetM(prhs[0]);
ncols = mxGetN(prhs[0]);
if (!mxIsSparse(prhs[0]) ||
!mxIsDouble(prhs[0]) ||
mxIsComplex(prhs[0]))
{
mexErrMsgTxt("Input must be a noncomplex sparse matrix.");
}
/* The second input must be a vector. */
if (mxGetM(prhs[1])*mxGetN(prhs[1]) != mrows ||
mxIsSparse(prhs[1]) || !mxIsDouble(prhs[1]))
{
mexErrMsgTxt("Invalid vector 2.");
}
/* Get the sparse matrix */
A_val = mxGetPr(prhs[0]);
A_row = mxGetIr(prhs[0]);
A_col = mxGetJc(prhs[0]);
/* Get the vector x */
x = mxGetPr(prhs[1]);
plhs[0] = mxCreateDoubleMatrix(ncols,1,mxREAL);
y = mxGetPr(plhs[0]);
for (i = 0; i < ncols; i++)
{
yval = 0.0;
for (j = A_col[i]; j < A_col[i+1]; ++j)
{
yval += A_val[j]*x[A_row[j]];
}
y[i] = yval;
}
}

BIN
matlab/package/spmatvec_transmult.mexa64

Binary file not shown.

BIN
matlab/package/spmatvec_transmult.mexglx

Binary file not shown.

88
serial.c

@ -1,88 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
void main(){
printf("Hello I am maria \n");
//Read from file of adjacency matrix
FILE *adjm;
int x;
adjm = fopen("adj_matrix.txt", "r+");
if(!adjm){
printf("Error opening file \n");
exit(0);
}
//Read dimensions of file (square)
int m, count=0;
while((m=fgetc(adjm))) {
/* break if end of file */
if(m == EOF) break;
/* otherwise add one to the count of that particular character */
if(m=='\n'){
count+=1;
}
}
printf("Line count of matrix is %d \n", count);
int d = count;
int i,j;
// Put values in matrix A
int** A = malloc(d*sizeof(int *));
for( i=0; i<d ; i++){
A[i] = malloc(d*sizeof(int));
}
for( i=0; i<d ; i++){
for(j=0 ; j<d; j++){
if(!fscanf(adjm, "%d ", &A[i][j])){
break;
}
//printf("A[%d][%d] = %d", i , j, A[i][j]);
}
}
fclose(adjm);
printf(" First val is %d Last val is %d \n", A[0][0], A[d-1][d-1]);
//Make A appropriate for the algorithm
// no page has outdegree 0, using uniform probability 1/n, no personalization
int* flag;
flag = malloc(d*sizeof(int));
for(i=0; i<d ; i++){
flag[i] = 0;
}
for( i=0; i<d ; i++){
for(j=0 ; j<d; j++){
if(A[i][j]!=0){
flag[i]=1;
}
}
if(flag[i] == 1){
for(j=0 ; j<d; j++){
A[i][j] = 1;
}
}
printf("A[%d][%d] = %d", i , j, A[i][j]);
}
//Change to transpose of matrix
// Rows become columns
int **AT = malloc(d*sizeof(int *));
for( i=0; i<d ; i++){
AT[i] = malloc(d*sizeof(int));
}
for( i=0; i<d ; i++){
for(j=0 ; j<d; j++){
AT[j][i] = A[i][j];
}
}
}

36
serial/Makefile

@ -0,0 +1,36 @@
SHELL := /bin/bash
# ============================================
# COMMANDS
CC = gcc
RM = rm -f
CFLAGS=-O0 -g -I.
OBJ=serial_gs_pagerank.o serial_gs_pagerank_functions.o
DEPS=serial_gs_pagerank_functions.h
# ==========================================
# TARGETS
EXECUTABLES = pagerank
.PHONY: all clean
all: $(EXECUTABLES)
# ==========================================
# DEPENDENCIES (HEADERS)
%.o: %.c $(DEPS)
$(CC) -c -o $@ $< $(CFLAGS)
.PRECIOUS: $(EXECUTABLES) $(OBJ)
# ==========================================
# EXECUTABLE (MAIN)
$(EXECUTABLES): $(OBJ)
$(CC) -o $@ $^ $(CFLAGS)
clean:
$(RM) *.o *~ $(EXECUTABLES)

BIN
serial/pagerank

Binary file not shown.

32
serial/serial_gs_pagerank.c

@ -0,0 +1,32 @@
#include <sys/time.h>
#include "serial_gs_pagerank_functions.h"
struct timeval startwtime, endwtime;
double seq_time;
int main(int argc, char **argv) {
int **directedWebGraph;
double **transitionMatrix, *pagerankVector;
Parameters parameters;
parseArguments(argc, argv, &parameters);
initialize(&directedWebGraph, &transitionMatrix, &pagerankVector, &parameters);
//Starts wall-clock timer
gettimeofday (&startwtime, NULL);
int iterations = pagerank(&transitionMatrix, &pagerankVector, parameters);
if (parameters.verbose) {
printf("\n----- Results -----\
\nTotal iterations = %d\n", iterations);
}
//Stops wall-clock timer
gettimeofday (&endwtime, NULL);
double seq_time = (double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 +
endwtime.tv_sec - startwtime.tv_sec);
printf("%s wall clock time = %f\n","Pagerank (Gauss-Seidel method), serial implementation",
seq_time);
}

286
serial/serial_gs_pagerank_functions.c

@ -0,0 +1,286 @@
#include "serial_gs_pagerank_functions.h"
const char *CONVERGENCE_ARGUMENT = "-c";
const char *MAX_ITERATIONS_ARGUMENT = "-m";
const char *DAMPING_FACTOR_ARGUMENT = "-a";
const char *VERBAL_OUTPUT_ARGUMENT = "-v";
const int NUMERICAL_BASE = 10;
void validUsage(char *programName) {
printf("%s [-c convergence] [-m max_iterations] [-a alpha] [-v] <graph_file>\
\n-c convergence\
\n\tthe convergence criterion\
\n-m max_iterations\
\n\tmaximum number of iterations to perform\
\n-a alpha\
\n\tthe damping factor\
\n-v enable verbal output\
\n", programName);
exit(EXIT_FAILURE);
}
int checkIncrement(int previousIndex, int maxIndex, char *programName) {
if (previousIndex == maxIndex) {
validUsage(programName);
exit(EXIT_FAILURE);
}
return ++previousIndex;
}
void parseArguments(int argumentCount, char **argumentVector, Parameters *parameters) {
if (argumentCount < 2 || argumentCount > 10) {
validUsage(argumentVector[0]);
}
(*parameters).numberOfPages = 0;
(*parameters).maxIterations = 0;
(*parameters).convergenceCriterion = 1;
(*parameters).dampingFactor = 0.85;
(*parameters).verbose = false;
char *endPointer;
int argumentIndex = 1;
while (argumentIndex < argumentCount) {
if (!strcmp(argumentVector[argumentIndex], CONVERGENCE_ARGUMENT)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
double convergenceInput = strtod(argumentVector[argumentIndex], &endPointer);
if (convergenceInput == 0) {
printf("Invalid convergence argument\n");
exit(EXIT_FAILURE);
}
(*parameters).convergenceCriterion = convergenceInput;
} else if (!strcmp(argumentVector[argumentIndex], MAX_ITERATIONS_ARGUMENT)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
size_t iterationsInput = strtol(argumentVector[argumentIndex], &endPointer, NUMERICAL_BASE);
if (iterationsInput == 0 && endPointer) {
printf("Invalid iterations argument\n");
exit(EXIT_FAILURE);
}
(*parameters).maxIterations = iterationsInput;
} else if (!strcmp(argumentVector[argumentIndex], DAMPING_FACTOR_ARGUMENT)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
double alphaInput = strtod(argumentVector[argumentIndex], &endPointer);
if ((alphaInput == 0 || alphaInput > 1) && endPointer) {
printf("Invalid alpha argument\n");
exit(EXIT_FAILURE);
}
(*parameters).dampingFactor = alphaInput;
} else if (!strcmp(argumentVector[argumentIndex], VERBAL_OUTPUT_ARGUMENT)) {
(*parameters).verbose = true;
} else if (argumentIndex == argumentCount - 1) {
(*parameters).graphFilename = argumentVector[argumentIndex];
} else {
validUsage(argumentVector[0]);
exit(EXIT_FAILURE);
}
++argumentIndex;
}
}
void readGraphFromFile(int ***directedWebGraph, Parameters *parameters) {
FILE *graphFile;
// Opens the file for reading
graphFile = fopen((*parameters).graphFilename, "r+");
if (!graphFile) {
printf("Error opening file \n");
exit(EXIT_FAILURE);
}
// Reads the dimensions of the (square) array from the file
int readChar, numberOfLines=0;
while((readChar = fgetc(graphFile))) {
// Breaks if end of file
if (readChar == EOF) break;
// Otherwise, if the character is a break line, adds one to the count of lines
if (readChar == '\n') {
++numberOfLines;
}
}
if ((*parameters).verbose) {
printf("Line count of file is %d \n", numberOfLines);
}
// Each line of the file represents one page of the graph
(*parameters).numberOfPages = numberOfLines;
rewind(graphFile);
// Allocates memory and loads values into directedWebGraph (matrix A)
// Allocates memory for the rows
(*directedWebGraph) = (int **) malloc((*parameters).numberOfPages * sizeof(int *));
for (int i=0; i<(*parameters).numberOfPages; ++i) {
// Allocates memory for the columns of this row
(*directedWebGraph)[i] = (int *) malloc((*parameters).numberOfPages * sizeof(int));
// Reads values from the file
for (int j=0; j<(*parameters).numberOfPages; ++j) {
if (!fscanf(graphFile, "%d ", &(*directedWebGraph)[i][j])) {
break;
}
//printf("directedWebGraph[%d][%d] = %d", i , j, (*directedWebGraph)[i][j]);
}
}
fclose(graphFile);
}
void generateNormalizedTransitionMatrix(double ***transitionMatrix,
int **directedWebGraph, Parameters parameters) {
// Allocates memory for the transitionMatrix rows
(*transitionMatrix) = (double **) malloc(parameters.numberOfPages * sizeof(double *));
for (int i=0; i<parameters.numberOfPages; ++i) {
// Allocates memory for this row's columns
(*transitionMatrix)[i] = (double *) malloc(parameters.numberOfPages * sizeof(double));
int pageOutdegree = 0;
//Calculates the outdegree of this page
for (int j=0; j<parameters.numberOfPages; ++j) {
pageOutdegree += directedWebGraph[i][j];
}
for (int j=0; j<parameters.numberOfPages; ++j) {
if (pageOutdegree == 0) {
// Introduces random jumps from dangling nodes (P' = P + D)
// This makes sure that there are no pages with zero outdegree.
(*transitionMatrix)[i][j] = 1. / parameters.numberOfPages;
} else {
(*transitionMatrix)[i][j] = 1. / pageOutdegree;
}
}
}
}
void makeIrreducible(double ***transitionMatrix, Parameters parameters) {
// Manipulates the values of transitionMatrix to make it irreducible. A
// uniform probability (1/number_of_pages) and no personalization are used
// here.
// Introduces teleportation (P'' = cP' + (1 - c)E)
for (int i=0; i<parameters.numberOfPages; ++i) {
for (int j=0; j<parameters.numberOfPages; ++j) {
(*transitionMatrix)[i][j] =
parameters.dampingFactor *(*transitionMatrix)[i][j] +
(1 - parameters.dampingFactor) / parameters.numberOfPages;
}
}
}
void transposeMatrix(double ***matrix, int rows, int columns) {
// Transposes the matrix
// Rows become columns and vice versa
double **tempArray = (double **) malloc(rows * sizeof(double *));
for (int i=0; i<rows; ++i) {
tempArray[i] = malloc(columns * sizeof(double));
for (int j=0; j<columns; ++j) {
tempArray[i][j] = (*matrix)[j][i];
}
}
//double **pointerToFreeMemoryLater = *matrix;
matrix = &tempArray;
/*for (int i=0; i<rows; ++i) {
free(pointerToFreeMemoryLater[i]);
}
free(pointerToFreeMemoryLater);*/
}
void initialize(int ***directedWebGraph, double ***transitionMatrix,
double **pagerankVector, Parameters *parameters) {
if ((*parameters).verbose) {
printf("----- Reading graph from file -----\n");
}
readGraphFromFile(directedWebGraph, parameters);
if ((*parameters).verbose) {
printf("\n----- Running with parameters -----\
\nNumber of pages: %d", (*parameters).numberOfPages);
if (!(*parameters).maxIterations) {
printf("\nMaximum number of iterations: inf");
} else {
printf("\nMaximum number of iterations: %d", (*parameters).maxIterations);
}
printf("\nConvergence criterion: %f\
\nDamping factor: %f\
\nGraph filename: %s\n", (*parameters).convergenceCriterion,
(*parameters).dampingFactor, (*parameters).graphFilename);
}
// Allocates memory for the pagerank vector
(*pagerankVector) = (double *) malloc((*parameters).numberOfPages * sizeof(double));
for (int i=0; i<(*parameters).numberOfPages; ++i) {
(*pagerankVector)[i] = 1. / (*parameters).numberOfPages;
}
generateNormalizedTransitionMatrix(transitionMatrix, *directedWebGraph, *parameters);
makeIrreducible(transitionMatrix, *parameters);
transposeMatrix(transitionMatrix, (*parameters).numberOfPages, (*parameters).numberOfPages);
}
double vectorFirstNorm(double *vector, int vectorSize) {
double norm = 0;
for (int i=0; i<vectorSize; ++i) {
norm += vector[i];
}
return norm;
}
void nextProbabilityDistribution(double ***transitionMatrix, double *previousPagerankVector,
double **newPagerankVector, Parameters parameters) {
transposeMatrix(transitionMatrix, parameters.numberOfPages, parameters.numberOfPages);
for (int i=0; i<parameters.numberOfPages; ++i) {
double sum = 0;
for (int j=0; j<parameters.numberOfPages; ++j) {
sum += (*transitionMatrix)[i][j] * previousPagerankVector[j];
}
(*newPagerankVector)[i] = parameters.dampingFactor * sum;
}
double normDifference = vectorFirstNorm(previousPagerankVector, parameters.numberOfPages) -
vectorFirstNorm((*newPagerankVector), parameters.numberOfPages);
for (int i=0; i<parameters.numberOfPages; ++i) {
(*newPagerankVector)[i] += normDifference / parameters.numberOfPages;
}
transposeMatrix(transitionMatrix, parameters.numberOfPages, parameters.numberOfPages);
}
int pagerank(double ***transitionMatrix, double **pagerankVector, Parameters parameters) {
int iterations = 0;
double delta,
*vectorDifference = (double *) malloc(parameters.numberOfPages * sizeof(double)),
*previousPagerankVector = (double *) malloc(parameters.numberOfPages * sizeof(double));
if (parameters.verbose) {
printf("\n----- Starting iterations -----\n");
}
do {
memcpy(previousPagerankVector, *pagerankVector, parameters.numberOfPages * sizeof(double));
nextProbabilityDistribution(transitionMatrix, previousPagerankVector, pagerankVector, parameters);
for (int i=0; i<parameters.numberOfPages; ++i) {
vectorDifference[i] = (*pagerankVector)[i] - previousPagerankVector[i];
}
delta = vectorFirstNorm(vectorDifference, parameters.numberOfPages);
++iterations;
printf("Iteration %d: delta = %f\n", iterations, delta);
} while (delta > parameters.convergenceCriterion &&
(parameters.maxIterations != 0 || iterations < parameters.maxIterations));
return iterations;
}

75
serial/serial_gs_pagerank_functions.h

@ -0,0 +1,75 @@
#ifndef SERIAL_GS_PAGERANK_FUNCTIONS_H /* Include guard */
#define SERIAL_GS_PAGERANK_FUNCTIONS_H
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*
* Constant strings that store the command line options available.
*/
extern const char *CONVERGENCE_ARGUMENT;
extern const char *MAX_ITERATIONS_ARGUMENT;
extern const char *DAMPING_FACTOR_ARGUMENT;
extern const char *VERBAL_OUTPUT_ARGUMENT;
// This is the numerical base used when parsing the numerical command line
// arguments.
extern const int NUMERICAL_BASE;
// Declares a data structure to conveniently hold the algorithm's parameters
typedef struct parameters {
int numberOfPages, maxIterations;
double convergenceCriterion, dampingFactor;
bool verbose;
char* graphFilename;
} Parameters;
// Function validUsage outputs the correct way to use the program with command
// line arguments.
void validUsage(char *programName);
// Function checkIncrement is a helper function used in parseArguments (see
// bellow).
int checkIncrement(int previousIndex, int maxIndex, char *programName);
// Function parseArguments parses command line arguments.
void parseArguments(int argumentCount, char **argumentVector, Parameters *parameters);
// Function readGraphFromFile loads the graph stored in the file provided in the
// command line arguments to the array directedWebGraph.
void readGraphFromFile(int ***directedWebGraph, Parameters *parameters);
// Function generateNormalizedTransitionMatrix generates the normalized transition
// matrix from the graph data.
void generateNormalizedTransitionMatrix(double ***transitionMatrix,
int **directedWebGraph, Parameters parameters);
// Function makeIrreducible introduces teleportation to the transition matrix,
// making it irreducible.
void makeIrreducible(double ***transitionMatrix, Parameters parameters);
// Function transposeMatrix transposes a matrix.
void transposeMatrix(double ***matrix, int rows, int columns);
// Function initialize allocates required memory for arrays, reads the dataset
// from the file and creates the transition probability distribution matrix.
void initialize(
int ***directedWebGraph, /*This is matrix G (web graph)*/
double ***transitionMatrix, /*This is matrix A (transition probability distribution matrix)*/
double **pagerankVector, /*This is the resulting pagerank vector*/
Parameters *parameters
);
// Function vectorFirstNorm calculates the first norm of a vector.
double vectorFirstNorm(double *vector, int vectorSize);
// Function nextProbabilityDistribution calculates the product of the transition
// matrix and the pagerank vector.
void nextProbabilityDistribution(double ***transitionMatrix, double *previousPagerankVector,
double **newPagerankVector, Parameters parameters);
int pagerank(double ***transitionMatrix, double **pagerankVector, Parameters parameters);
#endif // SERIAL_GS_PAGERANK_FUNCTIONS_H
Loading…
Cancel
Save