Browse Source

Implement parallel openmp algorithm

master
Apostolos Fanakis 6 years ago
parent
commit
ef493d09a3
No known key found for this signature in database GPG Key ID: 56CE2DEDE9F1FB78
  1. 4
      openmp/Makefile
  2. 17
      openmp/coo_sparse_matrix.c
  3. 27
      openmp/coo_sparse_matrix.h
  4. BIN
      openmp/coo_sparse_matrix.o
  5. 17
      openmp/csr_sparse_matrix.c
  6. 27
      openmp/csr_sparse_matrix.h
  7. BIN
      openmp/csr_sparse_matrix.o
  8. 65
      openmp/openmp_gs_pagerank.c
  9. 176
      openmp/openmp_gs_pagerank_functions.c
  10. 18
      openmp/openmp_gs_pagerank_functions.h
  11. BIN
      openmp/pagerank.out
  12. 44
      openmp/serial_gs_pagerank.c
  13. BIN
      openmp/serial_gs_pagerank.o
  14. BIN
      openmp/serial_gs_pagerank_functions.o

4
openmp/Makefile

@ -7,8 +7,8 @@ CC = gcc -std=gnu99 -fopenmp
RM = rm -f
CFLAGS_DEBUG=-O0 -ggdb3 -Wall -I.
CFLAGS=-O3 -Wall -I.
OBJ=serial_gs_pagerank.o serial_gs_pagerank_functions.o coo_sparse_matrix.o csr_sparse_matrix.o
DEPS=serial_gs_pagerank_functions.h coo_sparse_matrix.h csr_sparse_matrix.h
OBJ=openmp_gs_pagerank.o openmp_gs_pagerank_functions.o coo_sparse_matrix.o csr_sparse_matrix.o
DEPS=openmp_gs_pagerank_functions.h coo_sparse_matrix.h csr_sparse_matrix.h
# ==========================================
# TARGETS

17
openmp/coo_sparse_matrix.c

@ -15,9 +15,8 @@ void allocMemoryForCoo(CooSparseMatrix *sparseMatrix, int numberOfElements) {
}
void addElement(CooSparseMatrix *sparseMatrix, double value, int row, int column) {
// Checks if there is enough space allocated
if (sparseMatrix->numberOfNonZeroElements == sparseMatrix->size) {
printf("%d == %d |||| %d, %d\n", sparseMatrix->numberOfNonZeroElements,
sparseMatrix->size, row, column);
printf("Number of non zero elements exceeded size of matrix!\n");
exit(EXIT_FAILURE);
}
@ -29,6 +28,7 @@ void addElement(CooSparseMatrix *sparseMatrix, double value, int row, int column
newElement->rowIndex = row;
newElement->columnIndex = column;
// Adds the new element to the first empty (NULL) address of the matrix
sparseMatrix->elements[sparseMatrix->numberOfNonZeroElements] = newElement;
sparseMatrix->numberOfNonZeroElements = sparseMatrix->numberOfNonZeroElements + 1;
}
@ -42,14 +42,19 @@ void transposeSparseMatrix(CooSparseMatrix *sparseMatrix) {
}
}
/*
* This function is a port of the one found here:
* https://github.com/scipy/scipy/blob/3b36a57/scipy/sparse/sparsetools/coo.h#L34
*/
void transformToCSR(CooSparseMatrix initialSparseMatrix,
CsrSparseMatrix *transformedSparseMatrix) {
// Taken from here: https://github.com/scipy/scipy/blob/3b36a57/scipy/sparse/sparsetools/coo.h#L34
if (initialSparseMatrix.numberOfNonZeroElements > transformedSparseMatrix->size) {
// Checks if the sizes of the two matrices fit
if (initialSparseMatrix.numberOfNonZeroElements > transformedSparseMatrix->numberOfElements) {
printf("Transformed CSR matrix does not have enough space!\n");
exit(EXIT_FAILURE);
}
// Calculates the elements per row
for (int i=0; i<initialSparseMatrix.numberOfNonZeroElements; ++i){
int rowIndex = initialSparseMatrix.elements[i]->rowIndex;
transformedSparseMatrix->rowCumulativeIndexes[rowIndex] =
@ -63,6 +68,7 @@ void transformToCSR(CooSparseMatrix initialSparseMatrix,
sum += temp;
}
// Copies the values and columns of the elements
for (int i=0; i<initialSparseMatrix.numberOfNonZeroElements; ++i){
int row = initialSparseMatrix.elements[i]->rowIndex;
int destinationIndex = transformedSparseMatrix->rowCumulativeIndexes[row];
@ -73,13 +79,12 @@ void transformToCSR(CooSparseMatrix initialSparseMatrix,
transformedSparseMatrix->rowCumulativeIndexes[row]++;
}
// Fixes the cumulative sum
for (int i=0, last=0; i<=transformedSparseMatrix->size; i++){
int temp = transformedSparseMatrix->rowCumulativeIndexes[i];
transformedSparseMatrix->rowCumulativeIndexes[i] = last;
last = temp;
}
transformedSparseMatrix->numberOfNonZeroElements = initialSparseMatrix.numberOfNonZeroElements;
}
void cooSparseMatrixVectorMultiplication(CooSparseMatrix sparseMatrix,

27
openmp/coo_sparse_matrix.h

@ -1,6 +1,8 @@
#ifndef COO_SPARSE_MATRIX_H /* Include guard */
#define COO_SPARSE_MATRIX_H
/* ===== INCLUDES ===== */
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
@ -8,26 +10,51 @@
#include "csr_sparse_matrix.h"
/* ===== STRUCTURES ===== */
// One element of the coordinate formated sparse matrix.
typedef struct cooSparseMatrixElement {
double value;
int rowIndex, columnIndex;
} CooSparseMatrixElement;
// A sparse matrix in COOrdinate format (aka triplet format).
typedef struct cooSparseMatrix {
int size, numberOfNonZeroElements;
CooSparseMatrixElement **elements;
} CooSparseMatrix;
/* ===== FUNCTION DEFINITIONS ===== */
// initCooSparseMatrix creates and initializes the members of a CooSparseMatrix
// structure instance.
CooSparseMatrix initCooSparseMatrix();
//allocMemoryForCoo allocates memory for the elements of the matrix.
void allocMemoryForCoo(CooSparseMatrix *sparseMatrix, int numberOfElements);
// addElement adds an element representing the triplet passed in the arguments
// to the first empty address of the space allocated for the elements.
void addElement(CooSparseMatrix *sparseMatrix, double value, int row,
int column);
// transposeSparseMatrix transposes the matrix.
void transposeSparseMatrix(CooSparseMatrix *sparseMatrix);
// transformToCSR transforms the sparse matrix representation format from COO
// to CSR.
void transformToCSR(CooSparseMatrix initialSparseMatrix,
CsrSparseMatrix *transformedSparseMatrix);
// cooSparseMatrixVectorMultiplication calculates the product of a
// CooSparseMatrix and a vector.
void cooSparseMatrixVectorMultiplication(CooSparseMatrix sparseMatrix,
double *vector, double **product, int vectorSize);
// destroyCooSparseMatrix frees all space used by the CooSparseMatrix.
void destroyCooSparseMatrix(CooSparseMatrix *sparseMatrix);
// printCooSparseMatrix prints the values of a CooSparseMatrix.
void printCooSparseMatrix(CooSparseMatrix sparseMatrix);
#endif // COO_SPARSE_MATRIX_H

BIN
openmp/coo_sparse_matrix.o

Binary file not shown.

17
openmp/csr_sparse_matrix.c

@ -3,7 +3,7 @@
CsrSparseMatrix initCsrSparseMatrix() {
CsrSparseMatrix sparseMatrix;
sparseMatrix.size = 0;
sparseMatrix.numberOfNonZeroElements = 0;
sparseMatrix.numberOfElements = 0;
sparseMatrix.values = NULL;
sparseMatrix.columnIndexes = NULL;
@ -11,21 +11,23 @@ CsrSparseMatrix initCsrSparseMatrix() {
return sparseMatrix;
}
void allocMemoryForCsr(CsrSparseMatrix *sparseMatrix, int numberOfElements) {
void allocMemoryForCsr(CsrSparseMatrix *sparseMatrix, int size, int numberOfElements) {
sparseMatrix->values = (double *) malloc(numberOfElements * sizeof(double));
sparseMatrix->columnIndexes = (int *) malloc(
numberOfElements * sizeof(int));
sparseMatrix->rowCumulativeIndexes = (int *) malloc(
(numberOfElements + 1) * sizeof(int));
(size + 1) * sizeof(int));
for (int i=0; i<numberOfElements+1; ++i) {
for (int i=0; i<size+1; ++i) {
sparseMatrix->rowCumulativeIndexes[i] = 0;
}
sparseMatrix->size = numberOfElements;
sparseMatrix->size = size;
sparseMatrix->numberOfElements = numberOfElements;
}
// Row indexes start from 0!
void zeroOutRow(CsrSparseMatrix *sparseMatrix, int row) {
// Gets start and end indexes of the row's elements
int startIndex = sparseMatrix->rowCumulativeIndexes[row],
endIndex = sparseMatrix->rowCumulativeIndexes[row+1];
for (int i=startIndex; i<endIndex; ++i) {
@ -34,9 +36,8 @@ void zeroOutRow(CsrSparseMatrix *sparseMatrix, int row) {
}
void zeroOutColumn(CsrSparseMatrix *sparseMatrix, int column) {
for (int i=0; i<sparseMatrix->numberOfNonZeroElements; ++i){
for (int i=0; i<sparseMatrix->numberOfElements; ++i){
if(sparseMatrix->columnIndexes[i] == column){
// Zeros out this element
sparseMatrix->values[i] = 0;
}
}

27
openmp/csr_sparse_matrix.h

@ -1,24 +1,47 @@
#ifndef CSR_SPARSE_MATRIX_H /* Include guard */
#define CSR_SPARSE_MATRIX_H
/* ===== INCLUDES ===== */
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdlib.h>
/* ===== STRUCTURES ===== */
// A sparse matrix in compressed SparseRow format.
typedef struct csrSparseMatrix {
int size, numberOfNonZeroElements;
int size, numberOfElements;
int *rowCumulativeIndexes, *columnIndexes;
double *values;
} CsrSparseMatrix;
/* ===== FUNCTION DEFINITIONS ===== */
// initCsrSparseMatrix creates and initializes the members of a CsrSparseMatrix
// structure instance.
CsrSparseMatrix initCsrSparseMatrix();
void allocMemoryForCsr(CsrSparseMatrix *sparseMatrix, int numberOfElements);
// allocMemoryForCsr allocates memory for the elements of the matrix.
void allocMemoryForCsr(CsrSparseMatrix *sparseMatrix, int size, int numberOfElements);
// zeroOutRow assigns a zero value to all the elements of a row in the matrix.
void zeroOutRow(CsrSparseMatrix *sparseMatrix, int row);
// zeroOutColumn assigns a zero value to all the elements of a column in the
// matrix.
void zeroOutColumn(CsrSparseMatrix *sparseMatrix, int column);
// csrSparseMatrixVectorMultiplication calculates the product of a
// CsrSparseMatrix and a vector.
void csrSparseMatrixVectorMultiplication(CsrSparseMatrix sparseMatrix,
double *vector, double **product, int vectorSize);
// destroyCsrSparseMatrix frees all space used by the CsrSparseMatrix.
void destroyCsrSparseMatrix(CsrSparseMatrix *sparseMatrix);
// printCsrSparseMatrix prints the values of a CsrSparseMatrix.
void printCsrSparseMatrix(CsrSparseMatrix sparseMatrix);
#endif // CSR_SPARSE_MATRIX_H

BIN
openmp/csr_sparse_matrix.o

Binary file not shown.

65
openmp/openmp_gs_pagerank.c

@ -0,0 +1,65 @@
#include <sys/time.h>
#include "openmp_gs_pagerank_functions.h"
struct timeval startwtime, endwtime;
int main(int argc, char **argv) {
CsrSparseMatrix transitionMatrix = initCsrSparseMatrix();
double *pagerankVector;
bool convergenceStatus;
Parameters parameters;
int maxIterationsForConvergence = 0;
parseArguments(argc, argv, &parameters);
initialize(&transitionMatrix, &pagerankVector, &parameters);
// Saves information about the dataset to the output file
{
FILE *outputFile;
outputFile = fopen(parameters.outputFilename, "w");
if (outputFile == NULL) {
printf("Error while opening the output file.\n");
exit(EXIT_FAILURE);
}
fprintf(outputFile, "Pagerank will run for the dataset %s\n"\
"Dataset contains %d pages with %d outlinks.\n",
parameters.graphFilename, parameters.numberOfPages, transitionMatrix.size);
fclose(outputFile);
}
// Starts wall-clock timer
gettimeofday (&startwtime, NULL);
int* iterations = (int *)malloc(parameters.numberOfPages*sizeof(int));
// Calculates pagerank
iterations = pagerank(&transitionMatrix, &pagerankVector,
&convergenceStatus, parameters, &maxIterationsForConvergence);
// Stops wall-clock timer
gettimeofday (&endwtime, NULL);
double seq_time = (double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 +
endwtime.tv_sec - startwtime.tv_sec);
printf("%s wall clock time = %f\n","Pagerank (Gauss-Seidel method), serial implementation",
seq_time);
printf(ANSI_COLOR_YELLOW "\n----- RESULTS -----\n" ANSI_COLOR_RESET);
if (convergenceStatus) {
printf(ANSI_COLOR_GREEN "Pagerank converged after %d iterations!\n" \
ANSI_COLOR_RESET, maxIterationsForConvergence);
} else {
printf(ANSI_COLOR_RED "Pagerank did not converge after max number of" \
" iterations (%d) was reached!\n" ANSI_COLOR_RESET, maxIterationsForConvergence);
}
// Saves results to the output file
savePagerankToFile(parameters.outputFilename, iterations, pagerankVector,
parameters.numberOfPages, maxIterationsForConvergence);
free(pagerankVector);
destroyCsrSparseMatrix(&transitionMatrix);
}

176
openmp/serial_gs_pagerank_functions.c → openmp/openmp_gs_pagerank_functions.c

@ -1,12 +1,13 @@
/* ===== INCLUDES ===== */
#include "serial_gs_pagerank_functions.h"
#include <omp.h>
#include "openmp_gs_pagerank_functions.h"
/* ===== CONSTANTS ===== */
const char *ARGUMENT_CONVERGENCE_TOLERANCE = "-c";
const char *ARGUMENT_MAX_ITERATIONS = "-m";
const char *ARGUMENT_DAMPING_FACTOR = "-a";
const char *ARGUMENT_THREADS_NUMBER = "-t";
const char *ARGUMENT_VERBAL_OUTPUT = "-v";
const char *ARGUMENT_OUTPUT_HISTORY = "-h";
const char *ARGUMENT_OUTPUT_FILENAME = "-o";
@ -15,26 +16,31 @@ const int NUMERICAL_BASE = 10;
char *DEFAULT_OUTPUT_FILENAME = "pagerank_output";
const int FILE_READ_BUFFER_SIZE = 4096;
const int CONVERGENCE_CHECK_ITERATION_PERIOD = 3;
const int SPARSITY_INCREASE_ITERATION_PERIOD = 3;
const int CONVERGENCE_CHECK_ITERATION_PERIOD = 2;
const int SPARSITY_INCREASE_ITERATION_PERIOD = 10;
/* ===== GLOBAL VARIABLES ====== */
int numberOfThreads;
/* ===== FUNCTIONS ===== */
int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
bool *convergenceStatus, Parameters parameters) {
int* pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
bool *convergenceStatus, Parameters parameters, int* maxIterationsForConvergence) {
// Variables declaration
int iterations = 0, numberOfPages = parameters.numberOfPages;
int numberOfPages = parameters.numberOfPages;
int *iterations;
double delta, *pagerankDifference, *previousPagerankVector,
*convergedPagerankVector, *linksFromConvergedPagesPagerankVector;
CsrSparseMatrix originalTransitionMatrix = initCsrSparseMatrix();
CooSparseMatrix linksFromConvergedPages = initCooSparseMatrix();
bool *convergenceMatrix;
int P = omp_get_max_threads();
omp_set_num_threads(P);
// Space allocation
{
size_t sizeofDouble = sizeof(double);
// iterations until each page converged
iterations = (int *) malloc(numberOfPages * sizeof(int));
// pagerankDifference used to calculate delta
pagerankDifference = (double *) malloc(numberOfPages * sizeofDouble);
// previousPagerankVector holds last iteration's pagerank vector
@ -50,12 +56,22 @@ int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
*convergenceStatus = false;
// Initialization
allocMemoryForCoo(&linksFromConvergedPages, transitionMatrix->numberOfNonZeroElements);
#pragma omp parallel for num_threads(P)
// originalTransitionMatrix used to run pagerank in phases
allocMemoryForCsr(&originalTransitionMatrix, transitionMatrix->size, transitionMatrix->numberOfElements);
memcpy(originalTransitionMatrix.rowCumulativeIndexes, transitionMatrix->rowCumulativeIndexes,
(transitionMatrix->size+1) * sizeof(int));
memcpy(originalTransitionMatrix.columnIndexes, transitionMatrix->columnIndexes,
transitionMatrix->numberOfElements * sizeof(int));
memcpy(originalTransitionMatrix.values, transitionMatrix->values,
transitionMatrix->numberOfElements * sizeof(double));
allocMemoryForCoo(&linksFromConvergedPages, transitionMatrix->numberOfElements);
#pragma omp parallel for num_threads(numberOfThreads)
for (int i=0; i<numberOfPages; ++i) {
convergedPagerankVector[i] = 0;
convergenceMatrix[i] = false;
linksFromConvergedPagesPagerankVector[i] = 0;
iterations[i] = 0;
}
}
@ -75,14 +91,14 @@ int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
if (parameters.history) {
// Outputs pagerank vector to file
savePagerankToFile(parameters.outputFilename, iterations != 0,
*pagerankVector, numberOfPages, parameters.realIterations);
savePagerankToFile(parameters.outputFilename, NULL, *pagerankVector,
numberOfPages, *maxIterationsForConvergence);
}
// Periodically checks for convergence
if (!(iterations % CONVERGENCE_CHECK_ITERATION_PERIOD)) {
if (!((*maxIterationsForConvergence) % CONVERGENCE_CHECK_ITERATION_PERIOD)) {
// Builds pagerank vectors difference
#pragma omp parallel for num_threads(P)
#pragma omp parallel for num_threads(numberOfThreads)
for (int i=0; i<numberOfPages; ++i) {
pagerankDifference[i] = (*pagerankVector)[i] - previousPagerankVector[i];
}
@ -95,11 +111,13 @@ int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
}
}
++(*maxIterationsForConvergence);
// Periodically increases sparsity
if (iterations && !(iterations % SPARSITY_INCREASE_ITERATION_PERIOD)) {
if ((*maxIterationsForConvergence) && !(*maxIterationsForConvergence % SPARSITY_INCREASE_ITERATION_PERIOD)) {
bool *newlyConvergedPages = (bool *) malloc(numberOfPages * sizeof(bool));
// Checks each individual page for convergence
#pragma omp parallel for num_threads(P)
#pragma omp parallel for num_threads(numberOfThreads)
for (int i=0; i<numberOfPages; ++i) {
double difference = fabs((*pagerankVector)[i] -
previousPagerankVector[i]) / fabs(previousPagerankVector[i]);
@ -110,9 +128,11 @@ int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
newlyConvergedPages[i] = true;
convergenceMatrix[i] = true;
convergedPagerankVector[i] = (*pagerankVector)[i];
iterations[i] = *maxIterationsForConvergence;
}
}
#pragma omp parallel for num_threads(P)
#pragma omp parallel for num_threads(numberOfThreads)
for (int i=0; i<numberOfPages; ++i) {
// Filters newly converged pages
if (newlyConvergedPages[i] == true) {
@ -132,10 +152,10 @@ int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
}
}
// Increases sparsity of the transition matrix by
// deleting elements that correspond to converged pages
// Increases sparsity of the transition matrix by zeroing
// out elements that correspond to converged pages
zeroOutRow(transitionMatrix, i);
zeroOutColumn(transitionMatrix, i);
//zeroOutColumn(transitionMatrix, i);
// Builds the new linksFromConvergedPagesPagerankVector
cooSparseMatrixVectorMultiplication(linksFromConvergedPages,
@ -146,21 +166,29 @@ int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
free(newlyConvergedPages);
}
++iterations;
// Prunes the transition matrix every 8 iterations
if (*maxIterationsForConvergence != 0 && (*maxIterationsForConvergence%8 == 0)) {
memcpy(transitionMatrix->values, originalTransitionMatrix.values,
transitionMatrix->numberOfElements * sizeof(double));
#pragma omp parallel for num_threads(numberOfThreads)
for (int i=0; i<numberOfPages; ++i) {
convergedPagerankVector[i] = 0;
convergenceMatrix[i] = false;
linksFromConvergedPagesPagerankVector[i] = 0;
}
linksFromConvergedPages.numberOfNonZeroElements = 0;
}
// Outputs information about this iteration
if (iterations%2) {
printf(ANSI_COLOR_BLUE "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, iterations, delta);
} else {
printf(ANSI_COLOR_CYAN "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, iterations, delta);
if (parameters.verbose){
if ((*maxIterationsForConvergence)%2) {
printf(ANSI_COLOR_BLUE "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, *maxIterationsForConvergence, delta);
} else {
printf(ANSI_COLOR_CYAN "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, *maxIterationsForConvergence, delta);
}
}
} while (!*convergenceStatus && (parameters.maxIterations == 0 ||
iterations < parameters.maxIterations));
parameters.realIterations = iterations;
if (!parameters.history) {
// Outputs last pagerank vector to file
savePagerankToFile(parameters.outputFilename, false, *pagerankVector,
numberOfPages, parameters.realIterations);
}
*maxIterationsForConvergence < parameters.maxIterations));
// Frees memory
free(pagerankDifference);
@ -181,6 +209,9 @@ int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
void initialize(CsrSparseMatrix *transitionMatrix,
double **pagerankVector, Parameters *parameters) {
// Sets the number of threads to be used
omp_set_num_threads(numberOfThreads);
// Reads web graph from file
if ((*parameters).verbose) {
printf(ANSI_COLOR_YELLOW "----- Reading graph from file -----\n" ANSI_COLOR_RESET);
@ -190,7 +221,8 @@ void initialize(CsrSparseMatrix *transitionMatrix,
// Outputs the algorithm parameters to the console
if ((*parameters).verbose) {
printf(ANSI_COLOR_YELLOW "\n----- Running with parameters -----\n" ANSI_COLOR_RESET\
"Number of pages: %d", (*parameters).numberOfPages);
"Number of pages: %d"\
"\nNumber of threads: %d", (*parameters).numberOfPages, numberOfThreads);
if (!(*parameters).maxIterations) {
printf("\nMaximum number of iterations: inf");
} else {
@ -201,7 +233,7 @@ void initialize(CsrSparseMatrix *transitionMatrix,
"\nGraph filename: %s\n", (*parameters).convergenceCriterion,
(*parameters).dampingFactor, (*parameters).graphFilename);
}
(*parameters).realIterations = 0;
// Allocates memory for the pagerank vector
(*pagerankVector) = (double *) malloc((*parameters).numberOfPages * sizeof(double));
double webUniformProbability = 1. / (*parameters).numberOfPages;
@ -221,24 +253,22 @@ void calculateNextPagerank(CsrSparseMatrix *transitionMatrix,
double *linksFromConvergedPagesPagerankVector,
double *convergedPagerankVector, int vectorSize, double dampingFactor) {
// Calculates the web uniform probability once.
double webUniformProbability = 1. / vectorSize;
csrSparseMatrixVectorMultiplication(*transitionMatrix, previousPagerankVector,
pagerankVector, vectorSize);
#pragma omp parallel for
#pragma omp parallel for num_threads(4)
for (int i=0; i<vectorSize; ++i) {
(*pagerankVector)[i] = dampingFactor * (*pagerankVector)[i];
}
double normDifference = vectorNorm(previousPagerankVector, vectorSize) -
vectorNorm(*pagerankVector, vectorSize);
#pragma omp parallel for
for (int i=0; i<vectorSize; ++i) {
//(*pagerankVector)[i] += normDifference * webUniformProbability +
//linksFromConvergedPagesPagerankVector[i] + convergedPagerankVector[i];
(*pagerankVector)[i] += 0.5*normDifference* webUniformProbability +linksFromConvergedPagesPagerankVector[i] + convergedPagerankVector[i];
(*pagerankVector)[i] += normDifference * webUniformProbability +
linksFromConvergedPagesPagerankVector[i] + convergedPagerankVector[i];
}
}
@ -261,13 +291,15 @@ double vectorNorm(double *vector, int vectorSize) {
* parseArguments parses the command line arguments given by the user.
*/
void parseArguments(int argumentCount, char **argumentVector, Parameters *parameters) {
if (argumentCount < 2 || argumentCount > 10) {
if (argumentCount < 2 || argumentCount > 16) {
validUsage(argumentVector[0]);
}
numberOfThreads = omp_get_max_threads();
(*parameters).numberOfPages = 0;
(*parameters).maxIterations = 0;
(*parameters).convergenceCriterion = 1;
(*parameters).convergenceCriterion = 0.001;
(*parameters).dampingFactor = 0.85;
(*parameters).verbose = false;
(*parameters).history = false;
@ -304,6 +336,15 @@ void parseArguments(int argumentCount, char **argumentVector, Parameters *parame
exit(EXIT_FAILURE);
}
(*parameters).dampingFactor = alphaInput;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_THREADS_NUMBER)) {
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]);
size_t threadsInput = strtol(argumentVector[argumentIndex], &endPointer, NUMERICAL_BASE);
if (threadsInput == 0 && endPointer) {
printf("Invalid iterations argument\n");
exit(EXIT_FAILURE);
}
numberOfThreads = threadsInput;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_VERBAL_OUTPUT)) {
(*parameters).verbose = true;
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_OUTPUT_HISTORY)) {
@ -423,33 +464,27 @@ void generateNormalizedTransitionMatrixFromFile(CsrSparseMatrix *transitionMatri
// Calculates the outdegree of each page and assigns the uniform probability
// of transition to the elements of the corresponding row
int* pageOutdegree = malloc((*parameters).numberOfPages*sizeof(int));
for (int i=0; i<(*parameters).numberOfPages; ++i){
pageOutdegree[i] = 0;
}
for (int i=0; i<numberOfEdges; ++i) {
int currentRow = tempMatrix.elements[i]->rowIndex;
if (currentRow == tempMatrix.elements[i]->rowIndex) {
++pageOutdegree[currentRow];
}
++pageOutdegree[currentRow];
}
for (int i=0; i<tempMatrix.size; ++i) {
tempMatrix.elements[i]->value = 1./pageOutdegree[tempMatrix.elements[i]->rowIndex];
}
free(pageOutdegree);
// Transposes the temporary transition matrix (P^T).
transposeSparseMatrix(&tempMatrix);
allocMemoryForCsr(transitionMatrix, numberOfEdges);
allocMemoryForCsr(transitionMatrix, (*parameters).numberOfPages, numberOfEdges);
// Transforms the temporary COO matrix to the desired CSR format
transformToCSR(tempMatrix, transitionMatrix);
//printCsrSparseMatrix(*transitionMatrix);
destroyCooSparseMatrix(&tempMatrix);
fclose(graphFile);
@ -486,27 +521,34 @@ int checkIncrement(int previousIndex, int maxIndex, char *programName) {
return ++previousIndex;
}
void savePagerankToFile(char *filename, bool append, double *pagerankVector,
int vectorSize, int realIterations) {
void savePagerankToFile(char *filename, int *iterationsUntilConvergence,
double *pagerankVector, int vectorSize, int iteration) {
FILE *outputFile;
if (append) {
outputFile = fopen(filename, "a");
} else {
outputFile = fopen(filename, "w");
}
outputFile = fopen(filename, "a");
if (outputFile == NULL) {
printf("Error while opening the output file.\n");
return;
}
//Save numberofPages and convergence time
fprintf(outputFile, "\n----- Iteration %d -----\n", iteration);
// Saves the pagerank vector
double sum = 0;
for (int i=0; i<vectorSize; ++i) {
fprintf(outputFile, "%f ", pagerankVector[i]);
sum += pagerankVector[i];
}
fprintf(outputFile, "\n");
//fprintf(outputFile, "%d\t", vectorSize);
//fprintf(outputFile, "%d\t", realIterations);
if (iterationsUntilConvergence == NULL){
for (int i=0; i<vectorSize; ++i) {
fprintf(outputFile, "%d = %.10g\n", i, pagerankVector[i]/sum);
}
} else {
for (int i=0; i<vectorSize; ++i) {
fprintf(outputFile, "%d\t%d\t%.10g\n", i, iterationsUntilConvergence[i],
pagerankVector[i]/sum);
}
}
fclose(outputFile);
}

18
openmp/serial_gs_pagerank_functions.h → openmp/openmp_gs_pagerank_functions.h

@ -1,5 +1,5 @@
#ifndef SERIAL_GS_PAGERANK_FUNCTIONS_H /* Include guard */
#define SERIAL_GS_PAGERANK_FUNCTIONS_H
#ifndef OPENMP_GS_PAGERANK_FUNCTIONS_H /* Include guard */
#define OPENMP_GS_PAGERANK_FUNCTIONS_H
/* ===== INCLUDES ===== */
@ -8,6 +8,7 @@
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <omp.h>
#include "coo_sparse_matrix.h"
@ -27,6 +28,7 @@
extern const char *ARGUMENT_CONVERGENCE_TOLERANCE;
extern const char *ARGUMENT_MAX_ITERATIONS;
extern const char *ARGUMENT_DAMPING_FACTOR;
extern const char *ARGUMENT_THREADS_NUMBER;
extern const char *ARGUMENT_VERBAL_OUTPUT;
extern const char *ARGUMENT_OUTPUT_HISTORY;
extern const char *ARGUMENT_OUTPUT_FILENAME;
@ -41,7 +43,7 @@ extern const int FILE_READ_BUFFER_SIZE;
// A data structure to conveniently hold the algorithm's parameters.
typedef struct parameters {
int numberOfPages, maxIterations, realIterations;
int numberOfPages, maxIterations;
double convergenceCriterion, dampingFactor;
bool verbose, history;
char *outputFilename, *graphFilename;
@ -71,8 +73,8 @@ void generateNormalizedTransitionMatrixFromFile(CsrSparseMatrix *transitionMatri
// Function savePagerankToFile appends or overwrites the pagerank vector
// "pagerankVector" to the file with the filename supplied in the arguments.
void savePagerankToFile(char *filename, bool append, double *pagerankVector,
int vectorSize, int realIterations);
void savePagerankToFile(char *filename, int *iterationsUntilConvergence,
double *pagerankVector, int vectorSize, int iteration);
// Function initialize allocates memory for the pagerank vector, reads the
// dataset from the file and creates the transition probability distribution
@ -92,7 +94,7 @@ void calculateNextPagerank(CsrSparseMatrix *transitionMatrix,
// Function pagerank iteratively calculates the pagerank of each page until
// either the convergence criterion is met or the maximum number of iterations
// is reached.
int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
bool *convergenceStatus, Parameters parameters);
int* pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector,
bool *convergenceStatus, Parameters parameters, int* maxIterationsForConvergence);
#endif // SERIAL_GS_PAGERANK_FUNCTIONS_H
#endif // OPENMP_GS_PAGERANK_FUNCTIONS_H

BIN
openmp/pagerank.out

Binary file not shown.

44
openmp/serial_gs_pagerank.c

@ -1,44 +0,0 @@
#include <sys/time.h>
#include <omp.h>
#include "serial_gs_pagerank_functions.h"
//#include "coo_sparse_matrix.h"
struct timeval startwtime, endwtime;
double seq_time;
int main(int argc, char **argv) {
CsrSparseMatrix transitionMatrix = initCsrSparseMatrix();
double *pagerankVector;
bool convergenceStatus;
Parameters parameters;
omp_set_dynamic(0);
parseArguments(argc, argv, &parameters);
initialize(&transitionMatrix, &pagerankVector, &parameters);
// Starts wall-clock timer
gettimeofday (&startwtime, NULL);
int iterations = pagerank(&transitionMatrix, &pagerankVector,
&convergenceStatus, parameters);
if (parameters.verbose) {
printf(ANSI_COLOR_YELLOW "\n----- RESULTS -----\n" ANSI_COLOR_RESET);
if (convergenceStatus) {
printf(ANSI_COLOR_GREEN "Pagerank converged after %d iterations!\n" \
ANSI_COLOR_RESET, iterations);
} else {
printf(ANSI_COLOR_RED "Pagerank did not converge after max number of" \
" iterations (%d) was reached!\n" ANSI_COLOR_RESET, iterations);
}
}
// Stops wall-clock timer
gettimeofday (&endwtime, NULL);
double seq_time = (double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 +
endwtime.tv_sec - startwtime.tv_sec);
printf("%s wall clock time = %f\n","Pagerank (Gauss-Seidel method), serial implementation",
seq_time);
free(pagerankVector);
destroyCsrSparseMatrix(&transitionMatrix);
}

BIN
openmp/serial_gs_pagerank.o

Binary file not shown.

BIN
openmp/serial_gs_pagerank_functions.o

Binary file not shown.
Loading…
Cancel
Save