mtzikara
6 years ago
committed by
GitHub
9 changed files with 1120 additions and 0 deletions
@ -0,0 +1,37 @@ |
|||
SHELL := /bin/bash |
|||
|
|||
# ============================================
|
|||
# COMMANDS
|
|||
|
|||
CC = gcc -std=gnu99 -pthread |
|||
RM = rm -f |
|||
CFLAGS_DEBUG=-O0 -ggdb3 -Wall -I. |
|||
CFLAGS=-O3 -Wall -I. |
|||
OBJ=serial_gs_pagerank.o serial_gs_pagerank_functions.o coo_sparse_matrix.o csr_sparse_matrix.o |
|||
DEPS=serial_gs_pagerank_functions.h coo_sparse_matrix.h csr_sparse_matrix.h |
|||
|
|||
# ==========================================
|
|||
# TARGETS
|
|||
|
|||
EXECUTABLES = pagerank.out |
|||
|
|||
.PHONY: all clean |
|||
|
|||
all: $(EXECUTABLES) |
|||
|
|||
# ==========================================
|
|||
# DEPENDENCIES (HEADERS)
|
|||
|
|||
%.o: %.c $(DEPS) |
|||
$(CC) -c -o $@ $< $(CFLAGS) |
|||
|
|||
.PRECIOUS: $(EXECUTABLES) $(OBJ) |
|||
|
|||
# ==========================================
|
|||
# EXECUTABLE (MAIN)
|
|||
|
|||
$(EXECUTABLES): $(OBJ) |
|||
$(CC) -o $@ $^ $(CFLAGS) |
|||
|
|||
clean: |
|||
$(RM) *.o *~ $(EXECUTABLES) |
@ -0,0 +1,132 @@ |
|||
#include "coo_sparse_matrix.h" |
|||
|
|||
CooSparseMatrix initCooSparseMatrix() { |
|||
CooSparseMatrix sparseMatrix; |
|||
sparseMatrix.size = 0; |
|||
sparseMatrix.numberOfNonZeroElements = 0; |
|||
sparseMatrix.elements = NULL; |
|||
return sparseMatrix; |
|||
} |
|||
|
|||
void allocMemoryForCoo(CooSparseMatrix *sparseMatrix, int numberOfElements) { |
|||
sparseMatrix->elements = (CooSparseMatrixElement **) malloc( |
|||
numberOfElements * sizeof(CooSparseMatrixElement *)); |
|||
sparseMatrix->size = numberOfElements; |
|||
} |
|||
|
|||
void addElement(CooSparseMatrix *sparseMatrix, double value, int row, int column) { |
|||
// Checks if there is enough space allocated
|
|||
if (sparseMatrix->numberOfNonZeroElements == sparseMatrix->size) { |
|||
printf("Number of non zero elements exceeded size of matrix!\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
// Creates the new element
|
|||
CooSparseMatrixElement *newElement = (CooSparseMatrixElement *) malloc( |
|||
sizeof(CooSparseMatrixElement)); |
|||
newElement->value = value; |
|||
newElement->rowIndex = row; |
|||
newElement->columnIndex = column; |
|||
|
|||
// Adds the new element to the first empty (NULL) address of the matrix
|
|||
sparseMatrix->elements[sparseMatrix->numberOfNonZeroElements] = newElement; |
|||
sparseMatrix->numberOfNonZeroElements = sparseMatrix->numberOfNonZeroElements + 1; |
|||
} |
|||
|
|||
void transposeSparseMatrix(CooSparseMatrix *sparseMatrix) { |
|||
for (int i=0; i<sparseMatrix->numberOfNonZeroElements; ++i) { |
|||
CooSparseMatrixElement *element = sparseMatrix->elements[i]; |
|||
int tempRow = element->rowIndex; |
|||
element->rowIndex = element->columnIndex; |
|||
element->columnIndex = tempRow; |
|||
} |
|||
} |
|||
|
|||
/*
|
|||
* This function is a port of the one found here: |
|||
* https://github.com/scipy/scipy/blob/3b36a57/scipy/sparse/sparsetools/coo.h#L34
|
|||
*/ |
|||
void transformToCSR(CooSparseMatrix initialSparseMatrix, |
|||
CsrSparseMatrix *transformedSparseMatrix) { |
|||
// Checks if the sizes of the two matrices fit
|
|||
if (initialSparseMatrix.numberOfNonZeroElements > transformedSparseMatrix->size) { |
|||
printf("Transformed CSR matrix does not have enough space!\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
// Calculates the elements per row
|
|||
for (int i=0; i<initialSparseMatrix.numberOfNonZeroElements; ++i){ |
|||
int rowIndex = initialSparseMatrix.elements[i]->rowIndex; |
|||
transformedSparseMatrix->rowCumulativeIndexes[rowIndex] = |
|||
transformedSparseMatrix->rowCumulativeIndexes[rowIndex] + 1; |
|||
} |
|||
|
|||
// Cumulative sums the non zero elements per row
|
|||
for (int i=0, sum=0; i<transformedSparseMatrix->size+1; ++i){ |
|||
int temp = transformedSparseMatrix->rowCumulativeIndexes[i]; |
|||
transformedSparseMatrix->rowCumulativeIndexes[i] = sum; |
|||
sum += temp; |
|||
} |
|||
|
|||
// Copies the values and columns of the elements
|
|||
for (int i=0; i<initialSparseMatrix.numberOfNonZeroElements; ++i){ |
|||
int row = initialSparseMatrix.elements[i]->rowIndex; |
|||
int destinationIndex = transformedSparseMatrix->rowCumulativeIndexes[row]; |
|||
|
|||
transformedSparseMatrix->columnIndexes[destinationIndex] = initialSparseMatrix.elements[i]->columnIndex; |
|||
transformedSparseMatrix->values[destinationIndex] = initialSparseMatrix.elements[i]->value; |
|||
|
|||
transformedSparseMatrix->rowCumulativeIndexes[row]++; |
|||
} |
|||
|
|||
// Fixes the cumulative sum
|
|||
for (int i=0, last=0; i<=transformedSparseMatrix->size; i++){ |
|||
int temp = transformedSparseMatrix->rowCumulativeIndexes[i]; |
|||
transformedSparseMatrix->rowCumulativeIndexes[i] = last; |
|||
last = temp; |
|||
} |
|||
|
|||
transformedSparseMatrix->numberOfNonZeroElements = initialSparseMatrix.numberOfNonZeroElements; |
|||
} |
|||
|
|||
void cooSparseMatrixVectorMultiplication(CooSparseMatrix sparseMatrix, |
|||
double *vector, double **product, int vectorSize) { |
|||
// Initializes the elements of the product vector to zero
|
|||
for (int i=0; i<vectorSize; ++i) { |
|||
(*product)[i] = 0; |
|||
} |
|||
|
|||
CooSparseMatrixElement *element; |
|||
for (int i=0; i<sparseMatrix.numberOfNonZeroElements; ++i) { |
|||
element = sparseMatrix.elements[i]; |
|||
int row = element->rowIndex, column = element->columnIndex; |
|||
|
|||
if (row >= vectorSize) { |
|||
printf("Error at sparseMatrixVectorMultiplication. Matrix has more rows than vector!\n"); |
|||
printf("row = %d\n", row); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
(*product)[row] = (*product)[row] + element->value * vector[column]; |
|||
} |
|||
} |
|||
|
|||
void destroyCooSparseMatrix(CooSparseMatrix *sparseMatrix) { |
|||
for (int i=0; i<sparseMatrix->numberOfNonZeroElements; ++i) { |
|||
free(sparseMatrix->elements[i]); |
|||
} |
|||
free(sparseMatrix->elements); |
|||
} |
|||
|
|||
void printCooSparseMatrix(CooSparseMatrix sparseMatrix) { |
|||
if (sparseMatrix.numberOfNonZeroElements == 0) { |
|||
return; |
|||
} |
|||
|
|||
CooSparseMatrixElement *element; |
|||
for (int i=0; i<sparseMatrix.numberOfNonZeroElements; ++i) { |
|||
element = sparseMatrix.elements[i]; |
|||
printf("[%d,%d] = %f\n", element->rowIndex, element->columnIndex, |
|||
element->value); |
|||
} |
|||
} |
@ -0,0 +1,60 @@ |
|||
#ifndef COO_SPARSE_MATRIX_H /* Include guard */ |
|||
#define COO_SPARSE_MATRIX_H |
|||
|
|||
/* ===== INCLUDES ===== */ |
|||
|
|||
#include <stdbool.h> |
|||
#include <stdlib.h> |
|||
#include <stdio.h> |
|||
#include <stdlib.h> |
|||
|
|||
#include "csr_sparse_matrix.h" |
|||
|
|||
/* ===== STRUCTURES ===== */ |
|||
|
|||
// One element of the coordinate formated sparse matrix.
|
|||
typedef struct cooSparseMatrixElement { |
|||
double value; |
|||
int rowIndex, columnIndex; |
|||
} CooSparseMatrixElement; |
|||
|
|||
// A sparse matrix in COOrdinate format (aka triplet format).
|
|||
typedef struct cooSparseMatrix { |
|||
int size, numberOfNonZeroElements; |
|||
CooSparseMatrixElement **elements; |
|||
} CooSparseMatrix; |
|||
|
|||
/* ===== FUNCTION DEFINITIONS ===== */ |
|||
|
|||
// initCooSparseMatrix creates and initializes the members of a CooSparseMatrix
|
|||
// structure instance.
|
|||
CooSparseMatrix initCooSparseMatrix(); |
|||
|
|||
//allocMemoryForCoo allocates memory for the elements of the matrix.
|
|||
void allocMemoryForCoo(CooSparseMatrix *sparseMatrix, int numberOfElements); |
|||
|
|||
// addElement adds an element representing the triplet passed in the arguments
|
|||
// to the first empty address of the space allocated for the elements.
|
|||
void addElement(CooSparseMatrix *sparseMatrix, double value, int row, |
|||
int column); |
|||
|
|||
// transposeSparseMatrix transposes the matrix.
|
|||
void transposeSparseMatrix(CooSparseMatrix *sparseMatrix); |
|||
|
|||
// transformToCSR transforms the sparse matrix representation format from COO
|
|||
// to CSR.
|
|||
void transformToCSR(CooSparseMatrix initialSparseMatrix, |
|||
CsrSparseMatrix *transformedSparseMatrix); |
|||
|
|||
// cooSparseMatrixVectorMultiplication calculates the product of a
|
|||
// CooSparseMatrix and a vector.
|
|||
void cooSparseMatrixVectorMultiplication(CooSparseMatrix sparseMatrix, |
|||
double *vector, double **product, int vectorSize); |
|||
|
|||
// destroyCooSparseMatrix frees all space used by the CooSparseMatrix.
|
|||
void destroyCooSparseMatrix(CooSparseMatrix *sparseMatrix); |
|||
|
|||
// printCooSparseMatrix prints the values of a CooSparseMatrix.
|
|||
void printCooSparseMatrix(CooSparseMatrix sparseMatrix); |
|||
|
|||
#endif // COO_SPARSE_MATRIX_H
|
@ -0,0 +1,92 @@ |
|||
#include "csr_sparse_matrix.h" |
|||
|
|||
CsrSparseMatrix initCsrSparseMatrix() { |
|||
CsrSparseMatrix sparseMatrix; |
|||
sparseMatrix.size = 0; |
|||
sparseMatrix.numberOfNonZeroElements = 0; |
|||
|
|||
sparseMatrix.values = NULL; |
|||
sparseMatrix.columnIndexes = NULL; |
|||
sparseMatrix.rowCumulativeIndexes = NULL; |
|||
return sparseMatrix; |
|||
} |
|||
|
|||
void allocMemoryForCsr(CsrSparseMatrix *sparseMatrix, int numberOfElements) { |
|||
sparseMatrix->values = (double *) malloc(numberOfElements * sizeof(double)); |
|||
sparseMatrix->columnIndexes = (int *) malloc( |
|||
numberOfElements * sizeof(int)); |
|||
sparseMatrix->rowCumulativeIndexes = (int *) malloc( |
|||
(numberOfElements + 1) * sizeof(int)); |
|||
|
|||
for (int i=0; i<numberOfElements+1; ++i) { |
|||
sparseMatrix->rowCumulativeIndexes[i] = 0; |
|||
} |
|||
sparseMatrix->size = numberOfElements; |
|||
} |
|||
|
|||
void zeroOutRow(CsrSparseMatrix *sparseMatrix, int row) { |
|||
// Gets start and end indexes of the row's elements
|
|||
int startIndex = sparseMatrix->rowCumulativeIndexes[row], |
|||
endIndex = sparseMatrix->rowCumulativeIndexes[row+1]; |
|||
for (int i=startIndex; i<endIndex; ++i) { |
|||
sparseMatrix->values[i] = 0; |
|||
} |
|||
} |
|||
|
|||
void zeroOutColumn(CsrSparseMatrix *sparseMatrix, int column) { |
|||
for (int i=0; i<sparseMatrix->numberOfNonZeroElements; ++i){ |
|||
if(sparseMatrix->columnIndexes[i] == column){ |
|||
sparseMatrix->values[i] = 0; |
|||
} |
|||
} |
|||
} |
|||
|
|||
void csrSparseMatrixVectorMultiplication(CsrSparseMatrix sparseMatrix, |
|||
double *vector, double **product, int vectorSize) { |
|||
// Initializes the elements of the product vector to zero
|
|||
for (int i=0; i<vectorSize; ++i) { |
|||
(*product)[i] = 0; |
|||
} |
|||
|
|||
for (int i=0; i<sparseMatrix.size; ++i) { |
|||
// Gets start and end indexes of this row's elements
|
|||
int startIndex = sparseMatrix.rowCumulativeIndexes[i], |
|||
endIndex = sparseMatrix.rowCumulativeIndexes[i+1]; |
|||
|
|||
if (startIndex == endIndex) { |
|||
// This row has no elements
|
|||
continue; |
|||
} |
|||
|
|||
double sum = 0; |
|||
for(int j=startIndex; j<endIndex; ++j){ |
|||
int elementColumn = sparseMatrix.columnIndexes[j]; |
|||
sum += sparseMatrix.values[j] * vector[elementColumn]; |
|||
} |
|||
|
|||
(*product)[i] = sum; |
|||
} |
|||
} |
|||
|
|||
void destroyCsrSparseMatrix(CsrSparseMatrix *sparseMatrix) { |
|||
free(sparseMatrix->values); |
|||
free(sparseMatrix->rowCumulativeIndexes); |
|||
free(sparseMatrix->columnIndexes); |
|||
} |
|||
|
|||
void printCsrSparseMatrix(CsrSparseMatrix sparseMatrix) { |
|||
if (sparseMatrix.size == 0) { |
|||
return; |
|||
} |
|||
|
|||
for (int i=0; i<sparseMatrix.size; ++i){ |
|||
int startIndex = sparseMatrix.rowCumulativeIndexes[i], |
|||
endIndex = sparseMatrix.rowCumulativeIndexes[i+1]; |
|||
for(int j=startIndex; j<endIndex; ++j){ |
|||
printf("Row [%d] has [%d] nz elements: \n at column[%d] is value = %f \n", |
|||
i, endIndex-startIndex, |
|||
sparseMatrix.columnIndexes[j], |
|||
sparseMatrix.values[j]); |
|||
} |
|||
} |
|||
} |
@ -0,0 +1,47 @@ |
|||
#ifndef CSR_SPARSE_MATRIX_H /* Include guard */ |
|||
#define CSR_SPARSE_MATRIX_H |
|||
|
|||
/* ===== INCLUDES ===== */ |
|||
|
|||
#include <stdbool.h> |
|||
#include <stdlib.h> |
|||
#include <stdio.h> |
|||
#include <stdlib.h> |
|||
|
|||
/* ===== STRUCTURES ===== */ |
|||
|
|||
// A sparse matrix in compressed SparseRow format.
|
|||
typedef struct csrSparseMatrix { |
|||
int size, numberOfNonZeroElements; |
|||
int *rowCumulativeIndexes, *columnIndexes; |
|||
double *values; |
|||
} CsrSparseMatrix; |
|||
|
|||
/* ===== FUNCTION DEFINITIONS ===== */ |
|||
|
|||
// initCsrSparseMatrix creates and initializes the members of a CsrSparseMatrix
|
|||
// structure instance.
|
|||
CsrSparseMatrix initCsrSparseMatrix(); |
|||
|
|||
// allocMemoryForCsr allocates memory for the elements of the matrix.
|
|||
void allocMemoryForCsr(CsrSparseMatrix *sparseMatrix, int numberOfElements); |
|||
|
|||
// zeroOutRow assigns a zero value to all the elements of a row in the matrix.
|
|||
void zeroOutRow(CsrSparseMatrix *sparseMatrix, int row); |
|||
|
|||
// zeroOutColumn assigns a zero value to all the elements of a column in the
|
|||
// matrix.
|
|||
void zeroOutColumn(CsrSparseMatrix *sparseMatrix, int column); |
|||
|
|||
// csrSparseMatrixVectorMultiplication calculates the product of a
|
|||
// CsrSparseMatrix and a vector.
|
|||
void csrSparseMatrixVectorMultiplication(CsrSparseMatrix sparseMatrix, |
|||
double *vector, double **product, int vectorSize); |
|||
|
|||
// destroyCsrSparseMatrix frees all space used by the CsrSparseMatrix.
|
|||
void destroyCsrSparseMatrix(CsrSparseMatrix *sparseMatrix); |
|||
|
|||
// printCsrSparseMatrix prints the values of a CsrSparseMatrix.
|
|||
void printCsrSparseMatrix(CsrSparseMatrix sparseMatrix); |
|||
|
|||
#endif // CSR_SPARSE_MATRIX_H
|
Binary file not shown.
@ -0,0 +1,42 @@ |
|||
#include <sys/time.h> |
|||
|
|||
#include "serial_gs_pagerank_functions.h" |
|||
|
|||
struct timeval startwtime, endwtime; |
|||
|
|||
int main(int argc, char **argv) { |
|||
CsrSparseMatrix transitionMatrix = initCsrSparseMatrix(); |
|||
double *pagerankVector; |
|||
bool convergenceStatus; |
|||
Parameters parameters; |
|||
|
|||
parseArguments(argc, argv, ¶meters); |
|||
|
|||
initialize(&transitionMatrix, &pagerankVector, ¶meters); |
|||
|
|||
// Starts wall-clock timer
|
|||
gettimeofday (&startwtime, NULL); |
|||
|
|||
int iterations = pagerank(&transitionMatrix, &pagerankVector, |
|||
&convergenceStatus, parameters); |
|||
if (parameters.verbose) { |
|||
printf(ANSI_COLOR_YELLOW "\n----- RESULTS -----\n" ANSI_COLOR_RESET); |
|||
if (convergenceStatus) { |
|||
printf(ANSI_COLOR_GREEN "Pagerank converged after %d iterations!\n" \ |
|||
ANSI_COLOR_RESET, iterations); |
|||
} else { |
|||
printf(ANSI_COLOR_RED "Pagerank did not converge after max number of" \ |
|||
" iterations (%d) was reached!\n" ANSI_COLOR_RESET, iterations); |
|||
} |
|||
} |
|||
|
|||
// Stops wall-clock timer
|
|||
gettimeofday (&endwtime, NULL); |
|||
double seq_time = (double)((endwtime.tv_usec - startwtime.tv_usec)/1.0e6 + |
|||
endwtime.tv_sec - startwtime.tv_sec); |
|||
printf("%s wall clock time = %f\n","Pagerank (Gauss-Seidel method), serial implementation", |
|||
seq_time); |
|||
|
|||
free(pagerankVector); |
|||
destroyCsrSparseMatrix(&transitionMatrix); |
|||
} |
@ -0,0 +1,610 @@ |
|||
/* ===== INCLUDES ===== */ |
|||
|
|||
#include "serial_gs_pagerank_functions.h" |
|||
#include <pthread.h> |
|||
|
|||
/* ===== CONSTANTS ===== */ |
|||
|
|||
const char *ARGUMENT_CONVERGENCE_TOLERANCE = "-c"; |
|||
const char *ARGUMENT_MAX_ITERATIONS = "-m"; |
|||
const char *ARGUMENT_DAMPING_FACTOR = "-a"; |
|||
const char *ARGUMENT_VERBAL_OUTPUT = "-v"; |
|||
const char *ARGUMENT_OUTPUT_HISTORY = "-h"; |
|||
const char *ARGUMENT_OUTPUT_FILENAME = "-o"; |
|||
|
|||
const int NUMERICAL_BASE = 10; |
|||
char *DEFAULT_OUTPUT_FILENAME = "pagerank_output"; |
|||
const int FILE_READ_BUFFER_SIZE = 4096; |
|||
|
|||
const int CONVERGENCE_CHECK_ITERATION_PERIOD = 2; |
|||
const int SPARSITY_INCREASE_ITERATION_PERIOD = 10; |
|||
|
|||
/* ===== THREAD STUFF ====== */ |
|||
|
|||
pthread_mutex_t Q = PTHREAD_MUTEX_INITIALIZER;; |
|||
|
|||
typedef struct threadArgs{ |
|||
CsrSparseMatrix* transitionMatrix; |
|||
double* pagerankVector; |
|||
double* previousPagerankVector; |
|||
int numberOfPages; |
|||
double webUniformProbability; |
|||
double *linksFromConvergedPagesPagerankVector; |
|||
double *convergedPagerankVector; |
|||
int position; |
|||
double dF; |
|||
}threadArgs; |
|||
|
|||
/* ===== FUNCTIONS ===== */ |
|||
|
|||
int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector, |
|||
bool *convergenceStatus, Parameters parameters) { |
|||
// Variables declaration
|
|||
int iterations = 0, numberOfPages = parameters.numberOfPages; |
|||
double delta, *pagerankDifference, *previousPagerankVector, |
|||
*convergedPagerankVector, *linksFromConvergedPagesPagerankVector; |
|||
CooSparseMatrix linksFromConvergedPages = initCooSparseMatrix(); |
|||
bool *convergenceMatrix; |
|||
|
|||
|
|||
int threadNum = parameters.numberOfPages; |
|||
pthread_t* threads = (pthread_t *)malloc(threadNum*sizeof(pthread_t)); |
|||
|
|||
// Space allocation
|
|||
{ |
|||
size_t sizeofDouble = sizeof(double); |
|||
// pagerankDifference used to calculate delta
|
|||
pagerankDifference = (double *) malloc(numberOfPages * sizeofDouble); |
|||
// previousPagerankVector holds last iteration's pagerank vector
|
|||
previousPagerankVector = (double *) malloc(numberOfPages * sizeofDouble); |
|||
// convergedPagerankVector is the pagerank vector of converged pages only
|
|||
convergedPagerankVector = (double *) malloc(numberOfPages * sizeofDouble); |
|||
// linksFromConvergedPagesPagerankVector holds the partial sum of the
|
|||
// pagerank vector, that describes effect of the links from converged
|
|||
// pages to non converged pages
|
|||
linksFromConvergedPagesPagerankVector = (double *) malloc(numberOfPages * sizeofDouble); |
|||
// convergenceMatrix indicates which pages have converged
|
|||
convergenceMatrix = (bool *) malloc(numberOfPages * sizeof(bool)); |
|||
*convergenceStatus = false; |
|||
|
|||
// Initialization
|
|||
allocMemoryForCoo(&linksFromConvergedPages, transitionMatrix->numberOfNonZeroElements); |
|||
for (int i=0; i<numberOfPages; ++i) { |
|||
convergedPagerankVector[i] = 0; |
|||
convergenceMatrix[i] = false; |
|||
linksFromConvergedPagesPagerankVector[i] = 0; |
|||
} |
|||
} |
|||
|
|||
if (parameters.verbose) { |
|||
printf(ANSI_COLOR_YELLOW "\n----- Starting iterations -----\n" ANSI_COLOR_RESET); |
|||
} |
|||
|
|||
do { |
|||
// Stores previous pagerank vector
|
|||
memcpy(previousPagerankVector, *pagerankVector, numberOfPages * sizeof(double)); |
|||
|
|||
// Calculates new pagerank vector
|
|||
calculateNextPagerank(transitionMatrix, previousPagerankVector, |
|||
pagerankVector, linksFromConvergedPagesPagerankVector, |
|||
convergedPagerankVector, numberOfPages, |
|||
parameters.dampingFactor, threads, threadNum); |
|||
|
|||
if (parameters.history) { |
|||
// Outputs pagerank vector to file
|
|||
savePagerankToFile(parameters.outputFilename, iterations != 0, |
|||
*pagerankVector, numberOfPages, iterations); |
|||
} |
|||
|
|||
// Periodically checks for convergence
|
|||
if (!(iterations % CONVERGENCE_CHECK_ITERATION_PERIOD)) { |
|||
// Builds pagerank vectors difference
|
|||
for (int i=0; i<numberOfPages; ++i) { |
|||
pagerankDifference[i] = (*pagerankVector)[i] - previousPagerankVector[i]; |
|||
} |
|||
// Calculates convergence
|
|||
delta = vectorNorm(pagerankDifference, numberOfPages); |
|||
|
|||
if (delta < parameters.convergenceCriterion) { |
|||
// Converged
|
|||
*convergenceStatus = true; |
|||
} |
|||
} |
|||
|
|||
// Periodically increases sparsity
|
|||
if (iterations && !(iterations % SPARSITY_INCREASE_ITERATION_PERIOD)) { |
|||
bool *newlyConvergedPages = (bool *) malloc(numberOfPages * sizeof(bool)); |
|||
// Checks each individual page for convergence
|
|||
for (int i=0; i<numberOfPages; ++i) { |
|||
double difference = fabs((*pagerankVector)[i] - |
|||
previousPagerankVector[i]) / fabs(previousPagerankVector[i]); |
|||
|
|||
newlyConvergedPages[i] = false; |
|||
if (!convergenceMatrix[i] && difference < parameters.convergenceCriterion){ |
|||
// Page converged
|
|||
newlyConvergedPages[i] = true; |
|||
convergenceMatrix[i] = true; |
|||
convergedPagerankVector[i] = (*pagerankVector)[i]; |
|||
} |
|||
} |
|||
|
|||
for (int i=0; i<numberOfPages; ++i) { |
|||
// Filters newly converged pages
|
|||
if (newlyConvergedPages[i] == true) { |
|||
// Checks if this converged page has an out-link to a non converged one
|
|||
int rowStartIndex = transitionMatrix->rowCumulativeIndexes[i], |
|||
rowEndIndex = transitionMatrix->rowCumulativeIndexes[i+1]; |
|||
if (rowEndIndex > rowStartIndex) { |
|||
// This row (page) has non zero elements (out-links)
|
|||
for (int j=rowStartIndex; j<rowEndIndex; ++j) { |
|||
// Checks for links from converged pages to non converged
|
|||
int pageLinksTo = transitionMatrix->columnIndexes[j]; |
|||
if (convergenceMatrix[pageLinksTo] == false){ |
|||
// Link exists, adds element to the vector
|
|||
addElement(&linksFromConvergedPages, |
|||
transitionMatrix->values[j], i, pageLinksTo); |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Increases sparsity of the transition matrix by zeroing
|
|||
// out elements that correspond to converged pages
|
|||
zeroOutRow(transitionMatrix, i); |
|||
zeroOutColumn(transitionMatrix, i); |
|||
|
|||
// Builds the new linksFromConvergedPagesPagerankVector
|
|||
cooSparseMatrixVectorMultiplication(linksFromConvergedPages, |
|||
*pagerankVector, &linksFromConvergedPagesPagerankVector, |
|||
numberOfPages); |
|||
} |
|||
} |
|||
free(newlyConvergedPages); |
|||
} |
|||
|
|||
++iterations; |
|||
// Outputs information about this iteration
|
|||
if (iterations%2) { |
|||
printf(ANSI_COLOR_BLUE "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, iterations, delta); |
|||
} else { |
|||
printf(ANSI_COLOR_CYAN "Iteration %d: delta = %f\n" ANSI_COLOR_RESET, iterations, delta); |
|||
} |
|||
} while (!*convergenceStatus && (parameters.maxIterations == 0 || |
|||
iterations < parameters.maxIterations)); |
|||
|
|||
if (!parameters.history) { |
|||
// Always outputs last pagerank vector to file
|
|||
savePagerankToFile(parameters.outputFilename, false, *pagerankVector, |
|||
numberOfPages, iterations); |
|||
} |
|||
|
|||
// Frees memory
|
|||
free(pagerankDifference); |
|||
free(previousPagerankVector); |
|||
free(convergedPagerankVector); |
|||
free(linksFromConvergedPagesPagerankVector); |
|||
free(convergenceMatrix); |
|||
destroyCooSparseMatrix(&linksFromConvergedPages); |
|||
|
|||
return iterations; |
|||
} |
|||
|
|||
/*
|
|||
* initialize allocates required memory for arrays, reads the web graph from the |
|||
* from the file and creates the initial transition probability distribution |
|||
* matrix. |
|||
*/ |
|||
void initialize(CsrSparseMatrix *transitionMatrix, |
|||
double **pagerankVector, Parameters *parameters) { |
|||
|
|||
// Reads web graph from file
|
|||
if ((*parameters).verbose) { |
|||
printf(ANSI_COLOR_YELLOW "----- Reading graph from file -----\n" ANSI_COLOR_RESET); |
|||
} |
|||
generateNormalizedTransitionMatrixFromFile(transitionMatrix, parameters); |
|||
|
|||
// Outputs the algorithm parameters to the console
|
|||
if ((*parameters).verbose) { |
|||
printf(ANSI_COLOR_YELLOW "\n----- Running with parameters -----\n" ANSI_COLOR_RESET\ |
|||
"Number of pages: %d", (*parameters).numberOfPages); |
|||
if (!(*parameters).maxIterations) { |
|||
printf("\nMaximum number of iterations: inf"); |
|||
} else { |
|||
printf("\nMaximum number of iterations: %d", (*parameters).maxIterations); |
|||
} |
|||
printf("\nConvergence criterion: %f" \ |
|||
"\nDamping factor: %f" \ |
|||
"\nGraph filename: %s\n", (*parameters).convergenceCriterion, |
|||
(*parameters).dampingFactor, (*parameters).graphFilename); |
|||
} |
|||
|
|||
// Allocates memory for the pagerank vector
|
|||
(*pagerankVector) = (double *) malloc((*parameters).numberOfPages * sizeof(double)); |
|||
double webUniformProbability = 1. / (*parameters).numberOfPages; |
|||
for (int i=0; i<(*parameters).numberOfPages; ++i) { |
|||
(*pagerankVector)[i] = webUniformProbability; |
|||
} |
|||
} |
|||
|
|||
// ==================== MATH UTILS ====================
|
|||
|
|||
/*
|
|||
* calculateNextPagerank calculates the product of the multiplication |
|||
* between a matrix and the a vector in a cheap way. |
|||
*/ |
|||
void calculateNextPagerank(CsrSparseMatrix *transitionMatrix, |
|||
double *previousPagerankVector, double **pagerankVector, |
|||
double *linksFromConvergedPagesPagerankVector, |
|||
double *convergedPagerankVector, int vectorSize, double dampingFactor, pthread_t *threads, int threadNum) { |
|||
|
|||
pthread_attr_t attr; |
|||
pthread_attr_init(&attr); |
|||
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); |
|||
|
|||
// Calculates the web uniform probability once.
|
|||
double webUniformProbability = 1. / vectorSize; |
|||
int runningThreads = 0; |
|||
|
|||
for (int i=0; i<vectorSize; ++i) { |
|||
pthread_mutex_lock(&Q); |
|||
threadArgs arg; |
|||
arg.position = i; |
|||
arg.transitionMatrix = transitionMatrix; |
|||
arg.pagerankVector = *pagerankVector; |
|||
arg.previousPagerankVector = previousPagerankVector; |
|||
arg.linksFromConvergedPagesPagerankVector = linksFromConvergedPagesPagerankVector; |
|||
arg.convergedPagerankVector = convergedPagerankVector; |
|||
arg.webUniformProbability = webUniformProbability; |
|||
arg.dF = dampingFactor; |
|||
if(runningThreads < threadNum){ |
|||
if(pthread_create(&threads[i], &attr, csrSparseMatrixVectorMultiplication_threads, (void *) &arg)){ |
|||
printf("Error creating thread %d", i); |
|||
pthread_mutex_unlock(&Q); |
|||
exit(-1); |
|||
} |
|||
else{ |
|||
++runningThreads; |
|||
pthread_mutex_unlock(&Q); |
|||
} |
|||
} |
|||
else{ |
|||
pthread_mutex_unlock(&Q); |
|||
printf("not enough threads\n"); |
|||
exit(-1); |
|||
} |
|||
pthread_join(threads[i], NULL); |
|||
if(runningThreads < threadNum){ |
|||
if(pthread_create(&threads[i], &attr, compPagerankVector_threads, (void *) &arg)){ |
|||
printf("Error creating thread %d", i); |
|||
pthread_mutex_unlock(&Q); |
|||
exit(-1); |
|||
} |
|||
else{ |
|||
++runningThreads; |
|||
pthread_mutex_unlock(&Q); |
|||
} |
|||
} |
|||
else{ |
|||
printf("You have a problem \n"); |
|||
exit(-1); |
|||
pthread_mutex_unlock(&Q); |
|||
} |
|||
|
|||
} |
|||
for(int i=0; i<vectorSize; ++i){ |
|||
pthread_join(threads[i], NULL); |
|||
} |
|||
free(threads); |
|||
|
|||
} |
|||
|
|||
void compPagerankVector_threads(void* arg){ |
|||
threadArgs* co = (threadArgs *)arg; |
|||
co->pagerankVector[co->position] = co->dF * co->pagerankVector[co->position]; |
|||
|
|||
|
|||
double normDifference = vectorNorm(co->previousPagerankVector, co->numberOfPages) - |
|||
vectorNorm(co->pagerankVector, co->numberOfPages); |
|||
|
|||
|
|||
co->pagerankVector[co->position] += normDifference * co->webUniformProbability + |
|||
co->linksFromConvergedPagesPagerankVector[co->position] + co->convergedPagerankVector[co->position]; |
|||
|
|||
} |
|||
|
|||
void csrSparseMatrixVectorMultiplication_threads(void* arg){ |
|||
threadArgs* co = (threadArgs *)arg; |
|||
//(CsrSparseMatrix sparseMatrix,
|
|||
//double *vector, double **product, int vectorSize) {
|
|||
// Initializes the elements of the product vector to zero
|
|||
//for (int i=0; i<vectorSize; ++i) {
|
|||
co->pagerankVector[co->position] = 0; |
|||
//}
|
|||
|
|||
//for (int i=0; i<sparseMatrix.size; ++i) {
|
|||
// Gets start and end indexes of this row's elements
|
|||
int startIndex = co->transitionMatrix[co->position].rowCumulativeIndexes[co->position], |
|||
endIndex = co->transitionMatrix[co->position].rowCumulativeIndexes[co->position+1]; |
|||
|
|||
if (startIndex == endIndex) { |
|||
// This row has no elements
|
|||
return; |
|||
} |
|||
|
|||
double sum = 0; |
|||
for(int j=startIndex; j<endIndex; ++j){ |
|||
int elementColumn = co->transitionMatrix[co->position].columnIndexes[j]; |
|||
sum += co->transitionMatrix[co->position].values[j] * co->previousPagerankVector[elementColumn]; |
|||
} |
|||
|
|||
co->pagerankVector[co->position] = sum; |
|||
//}
|
|||
} |
|||
|
|||
|
|||
/*
|
|||
* vectorNorm calculates the first norm of a vector. |
|||
*/ |
|||
double vectorNorm(double *vector, int vectorSize) { |
|||
double norm = 0.; |
|||
|
|||
for (int i=0; i<vectorSize; ++i) { |
|||
norm += fabs(vector[i]); |
|||
} |
|||
|
|||
return norm; |
|||
} |
|||
|
|||
// ==================== PROGRAM INPUT AND OUTPUT UTILS ====================
|
|||
|
|||
/*
|
|||
* parseArguments parses the command line arguments given by the user. |
|||
*/ |
|||
void parseArguments(int argumentCount, char **argumentVector, Parameters *parameters) { |
|||
if (argumentCount < 2 || argumentCount > 10) { |
|||
validUsage(argumentVector[0]); |
|||
} |
|||
|
|||
(*parameters).numberOfPages = 0; |
|||
(*parameters).maxIterations = 0; |
|||
(*parameters).convergenceCriterion = 1; |
|||
(*parameters).dampingFactor = 0.85; |
|||
(*parameters).verbose = false; |
|||
(*parameters).history = false; |
|||
(*parameters).outputFilename = DEFAULT_OUTPUT_FILENAME; |
|||
|
|||
char *endPointer; |
|||
int argumentIndex = 1; |
|||
|
|||
while (argumentIndex < argumentCount) { |
|||
if (!strcmp(argumentVector[argumentIndex], ARGUMENT_CONVERGENCE_TOLERANCE)) { |
|||
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]); |
|||
|
|||
double convergenceInput = strtod(argumentVector[argumentIndex], &endPointer); |
|||
if (convergenceInput == 0) { |
|||
printf("Invalid convergence argument\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
(*parameters).convergenceCriterion = convergenceInput; |
|||
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_MAX_ITERATIONS)) { |
|||
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]); |
|||
|
|||
size_t iterationsInput = strtol(argumentVector[argumentIndex], &endPointer, NUMERICAL_BASE); |
|||
if (iterationsInput == 0 && endPointer) { |
|||
printf("Invalid iterations argument\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
(*parameters).maxIterations = iterationsInput; |
|||
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_DAMPING_FACTOR)) { |
|||
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]); |
|||
|
|||
double alphaInput = strtod(argumentVector[argumentIndex], &endPointer); |
|||
if ((alphaInput == 0 || alphaInput > 1) && endPointer) { |
|||
printf("Invalid alpha argument\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
(*parameters).dampingFactor = alphaInput; |
|||
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_VERBAL_OUTPUT)) { |
|||
(*parameters).verbose = true; |
|||
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_OUTPUT_HISTORY)) { |
|||
(*parameters).history = true; |
|||
} else if (!strcmp(argumentVector[argumentIndex], ARGUMENT_OUTPUT_FILENAME)) { |
|||
argumentIndex = checkIncrement(argumentIndex, argumentCount, argumentVector[0]); |
|||
|
|||
if (fopen(argumentVector[argumentIndex], "w") == NULL) { |
|||
printf("Invalid output filename. Reverting to default.\n"); |
|||
continue; |
|||
} |
|||
(*parameters).outputFilename = argumentVector[argumentIndex]; |
|||
} else if (argumentIndex == argumentCount - 1) { |
|||
(*parameters).graphFilename = argumentVector[argumentIndex]; |
|||
} else { |
|||
validUsage(argumentVector[0]); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
++argumentIndex; |
|||
} |
|||
} |
|||
|
|||
/*
|
|||
* readGraphFromFile loads the file supplied in the command line arguments to an |
|||
* array (directedWebGraph) that represents the graph. |
|||
*/ |
|||
void generateNormalizedTransitionMatrixFromFile(CsrSparseMatrix *transitionMatrix, |
|||
Parameters *parameters){ |
|||
FILE *graphFile; |
|||
|
|||
// Opens the file for reading
|
|||
graphFile = fopen((*parameters).graphFilename, "r+"); |
|||
if (!graphFile) { |
|||
printf("Error opening file \n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
char buffer[FILE_READ_BUFFER_SIZE]; |
|||
char *readResult; |
|||
// Skips the first two lines
|
|||
readResult = fgets(buffer, FILE_READ_BUFFER_SIZE, graphFile); |
|||
readResult = fgets(buffer, FILE_READ_BUFFER_SIZE, graphFile); |
|||
if (readResult == NULL) { |
|||
printf("Error while reading from the file. Does the file have the correct format?\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
// Third line contains the numbers of nodes and edges
|
|||
int numberOfNodes = 0, numberOfEdges = 0; |
|||
|
|||
readResult = fgets(buffer, FILE_READ_BUFFER_SIZE, graphFile); |
|||
if (readResult == NULL) { |
|||
printf("Error while reading from the file. Does the file have the correct format?\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
// Parses the number of nodes and number of edges
|
|||
{ |
|||
// Splits string to whitespace
|
|||
char *token = strtok(buffer, " "); |
|||
bool nextIsNodes = false, nextIsEdges = false; |
|||
|
|||
while (token != NULL) { |
|||
if (strcmp(token, "Nodes:") == 0) { |
|||
nextIsNodes = true; |
|||
} else if (nextIsNodes) { |
|||
numberOfNodes = atoi(token); |
|||
nextIsNodes = false; |
|||
} else if (strcmp(token, "Edges:") == 0) { |
|||
nextIsEdges = true; |
|||
} else if (nextIsEdges) { |
|||
numberOfEdges = atoi(token); |
|||
break; |
|||
} |
|||
|
|||
// Gets next string token
|
|||
token = strtok (NULL, " ,.-"); |
|||
} |
|||
} |
|||
|
|||
if ((*parameters).verbose) { |
|||
printf("File claims number of pages is: %d\nThe number of edges is: %d\n", |
|||
numberOfNodes, numberOfEdges); |
|||
} |
|||
|
|||
// Skips the fourth line
|
|||
readResult = fgets(buffer, 512, graphFile); |
|||
if (readResult == NULL) { |
|||
printf("Error while reading from the file. Does the file have the correct format?\n"); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
|
|||
int maxPageIndex = 0; |
|||
CooSparseMatrix tempMatrix = initCooSparseMatrix(); |
|||
allocMemoryForCoo(&tempMatrix, numberOfEdges); |
|||
|
|||
for (int i=0; i<numberOfEdges; i++) { |
|||
int fileFrom = 0, fileTo = 0; |
|||
if (!fscanf(graphFile, "%d %d", &fileFrom, &fileTo)) { |
|||
break; |
|||
} |
|||
|
|||
if (fileFrom > maxPageIndex) { |
|||
maxPageIndex = fileFrom; |
|||
} |
|||
if (fileTo > maxPageIndex) { |
|||
maxPageIndex = fileTo; |
|||
} |
|||
addElement(&tempMatrix, 1, fileFrom, fileTo); |
|||
} |
|||
|
|||
if ((*parameters).verbose) { |
|||
printf("Max page index found is: %d\n", maxPageIndex); |
|||
} |
|||
(*parameters).numberOfPages = maxPageIndex + 1; |
|||
|
|||
// Calculates the outdegree of each page and assigns the uniform probability
|
|||
// of transition to the elements of the corresponding row
|
|||
int* pageOutdegree = malloc((*parameters).numberOfPages*sizeof(int)); |
|||
for (int i=0; i<(*parameters).numberOfPages; ++i){ |
|||
pageOutdegree[i] = 0; |
|||
} |
|||
|
|||
for (int i=0; i<numberOfEdges; ++i) { |
|||
int currentRow = tempMatrix.elements[i]->rowIndex; |
|||
++pageOutdegree[currentRow]; |
|||
} |
|||
|
|||
for (int i=0; i<tempMatrix.size; ++i) { |
|||
tempMatrix.elements[i]->value = 1./pageOutdegree[tempMatrix.elements[i]->rowIndex]; |
|||
} |
|||
free(pageOutdegree); |
|||
|
|||
// Transposes the temporary transition matrix (P^T).
|
|||
transposeSparseMatrix(&tempMatrix); |
|||
|
|||
allocMemoryForCsr(transitionMatrix, numberOfEdges); |
|||
// Transforms the temporary COO matrix to the desired CSR format
|
|||
transformToCSR(tempMatrix, transitionMatrix); |
|||
destroyCooSparseMatrix(&tempMatrix); |
|||
|
|||
fclose(graphFile); |
|||
} |
|||
|
|||
/*
|
|||
* validUsage outputs a message to the console that informs the user of the |
|||
* correct (valid) way to use the program. |
|||
*/ |
|||
void validUsage(char *programName) { |
|||
printf("%s [-c convergence_criterion] [-m max_iterations] [-a alpha] [-v] [-h] [-o output_filename] <graph_file>" \ |
|||
"\n-c convergence_criterion" \ |
|||
"\n\tthe convergence tolerance criterion" \ |
|||
"\n-m max_iterations" \ |
|||
"\n\tmaximum number of iterations to perform" \ |
|||
"\n-a alpha" \ |
|||
"\n\tthe damping factor" \ |
|||
"\n-v enable verbal output" \ |
|||
"\n-h enable history output to file" \ |
|||
"\n-o output_filename" \ |
|||
"\n\tfilename and path for the output" \ |
|||
"\n", programName); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
|
|||
/*
|
|||
* checkIncrement is a helper function for parseArguments function. |
|||
*/ |
|||
int checkIncrement(int previousIndex, int maxIndex, char *programName) { |
|||
if (previousIndex == maxIndex) { |
|||
validUsage(programName); |
|||
exit(EXIT_FAILURE); |
|||
} |
|||
return ++previousIndex; |
|||
} |
|||
|
|||
void savePagerankToFile(char *filename, bool append, double *pagerankVector, |
|||
int vectorSize, int iteration) { |
|||
FILE *outputFile; |
|||
|
|||
if (append) { |
|||
outputFile = fopen(filename, "a"); |
|||
} else { |
|||
outputFile = fopen(filename, "w"); |
|||
} |
|||
|
|||
if (outputFile == NULL) { |
|||
printf("Error while opening the output file.\n"); |
|||
return; |
|||
} |
|||
|
|||
// Saves the pagerank vector
|
|||
//fprintf(outputFile, "Iteration %d:\t", iteration);
|
|||
double sum = 0; |
|||
for (int i=0; i<vectorSize; ++i) { |
|||
sum += pagerankVector[i]; |
|||
} |
|||
//fprintf(outputFile, "%f\n", sum);
|
|||
|
|||
for (int i=0; i<vectorSize; ++i) { |
|||
fprintf(outputFile, "%d = %.10g\n", i, pagerankVector[i]/sum); |
|||
} |
|||
|
|||
fclose(outputFile); |
|||
} |
@ -0,0 +1,100 @@ |
|||
#ifndef SERIAL_GS_PAGERANK_FUNCTIONS_H /* Include guard */ |
|||
#define SERIAL_GS_PAGERANK_FUNCTIONS_H |
|||
|
|||
/* ===== INCLUDES ===== */ |
|||
|
|||
#include <stdbool.h> |
|||
#include <stdio.h> |
|||
#include <stdlib.h> |
|||
#include <string.h> |
|||
#include <math.h> |
|||
|
|||
#include "coo_sparse_matrix.h" |
|||
|
|||
/* ===== DEFINITIONS ===== */ |
|||
|
|||
//Colors used for better console output formating.
|
|||
#define ANSI_COLOR_RED "\x1B[31m" |
|||
#define ANSI_COLOR_GREEN "\x1B[32m" |
|||
#define ANSI_COLOR_YELLOW "\x1B[33m" |
|||
#define ANSI_COLOR_BLUE "\x1B[34m" |
|||
#define ANSI_COLOR_CYAN "\x1B[36m" |
|||
#define ANSI_COLOR_RESET "\x1B[0m" |
|||
|
|||
/* ===== CONSTANTS DEFINITION ===== */ |
|||
|
|||
// Constant strings that store the command line options available.
|
|||
extern const char *ARGUMENT_CONVERGENCE_TOLERANCE; |
|||
extern const char *ARGUMENT_MAX_ITERATIONS; |
|||
extern const char *ARGUMENT_DAMPING_FACTOR; |
|||
extern const char *ARGUMENT_VERBAL_OUTPUT; |
|||
extern const char *ARGUMENT_OUTPUT_HISTORY; |
|||
extern const char *ARGUMENT_OUTPUT_FILENAME; |
|||
// The numerical base used when parsing numerical command line arguments.
|
|||
extern const int NUMERICAL_BASE; |
|||
// Default filename used for the output.
|
|||
extern char *DEFAULT_OUTPUT_FILENAME; |
|||
// The size of the buffer used for reading the graph input file.
|
|||
extern const int FILE_READ_BUFFER_SIZE; |
|||
|
|||
/* ===== STRUCTURES ===== */ |
|||
|
|||
// A data structure to conveniently hold the algorithm's parameters.
|
|||
typedef struct parameters { |
|||
int numberOfPages, maxIterations; |
|||
double convergenceCriterion, dampingFactor; |
|||
bool verbose, history; |
|||
char *outputFilename, *graphFilename; |
|||
} Parameters; |
|||
|
|||
/* ===== FUNCTION DEFINITIONS ===== */ |
|||
|
|||
// Function validUsage outputs the correct way to use the program with command
|
|||
// line arguments.
|
|||
void validUsage(char *programName); |
|||
|
|||
// Function checkIncrement is a helper function used in parseArguments (see
|
|||
// bellow).
|
|||
int checkIncrement(int previousIndex, int maxIndex, char *programName); |
|||
|
|||
// Function parseArguments parses command line arguments.
|
|||
void parseArguments(int argumentCount, char **argumentVector, |
|||
Parameters *parameters); |
|||
|
|||
// Function generateNormalizedTransitionMatrixFromFile reads through the entries
|
|||
// of the file specified in the arguments (parameters->graphFilename), using
|
|||
// them to populate the sparse array (transitionMatrix). The entries of the file
|
|||
// represent the edges of the web transition graph. The entries are then
|
|||
// modified to become the rows of the transition matrix.
|
|||
void generateNormalizedTransitionMatrixFromFile(CsrSparseMatrix *transitionMatrix, |
|||
Parameters *parameters); |
|||
|
|||
// Function savePagerankToFile appends or overwrites the pagerank vector
|
|||
// "pagerankVector" to the file with the filename supplied in the arguments.
|
|||
void savePagerankToFile(char *filename, bool append, double *pagerankVector, |
|||
int vectorSize, int iteration); |
|||
|
|||
// Function initialize allocates memory for the pagerank vector, reads the
|
|||
// dataset from the file and creates the transition probability distribution
|
|||
// matrix.
|
|||
void initialize(CsrSparseMatrix *transitionMatrix, double **pagerankVector, |
|||
Parameters *parameters); |
|||
|
|||
// Function vectorNorm calculates the first norm of a vector.
|
|||
double vectorNorm(double *vector, int vectorSize); |
|||
|
|||
// Function calculateNextPagerank calculates the next pagerank vector.
|
|||
void calculateNextPagerank(CsrSparseMatrix *transitionMatrix, |
|||
double *previousPagerankVector, double **pagerankVector, |
|||
double *linksFromConvergedPagesPagerankVector, |
|||
double *convergedPagerankVector, int vectorSize, double dampingFactor, pthread_t *threads, int threadNum); |
|||
|
|||
// Function pagerank iteratively calculates the pagerank of each page until
|
|||
// either the convergence criterion is met or the maximum number of iterations
|
|||
// is reached.
|
|||
int pagerank(CsrSparseMatrix *transitionMatrix, double **pagerankVector, |
|||
bool *convergenceStatus, Parameters parameters); |
|||
|
|||
void csrSparseMatrixVectorMultiplication_threads(void* arg); |
|||
void compPagerankVector_threads(void* arg); |
|||
#endif // SERIAL_GS_PAGERANK_FUNCTIONS_H
|
Loading…
Reference in new issue