Browse Source

Init rewrite, Add message struct

rewrite
Apostolos Fanakis 5 years ago
parent
commit
204c54849f
  1. 7
      Makefile
  2. 362
      lib/circ_buff.c
  3. 80
      lib/circ_buff.h
  4. 353
      lib/helpers.c
  5. 65
      lib/helpers.h
  6. 132
      lib/message.c
  7. 44
      lib/message.h
  8. 124
      lib/node.c
  9. 59
      lib/node.h
  10. 95
      src/zaqar.c
  11. 28
      src/zaqar.h
  12. 517
      test/test_circ_buff.c
  13. 107
      test/test_message.c
  14. 176
      test/test_node.c

7
Makefile

@ -28,7 +28,7 @@ PATHD = build/depends/
PATHO = build/objs/ PATHO = build/objs/
PATHR = build/results/ PATHR = build/results/
BUILD_PATHS = $(PATHB) $(PATHD) $(PATHO) $(PATHR) $(PATHL) BUILD_PATHS = $(PATHB) $(PATHD) $(PATHO) $(PATHR) $(PATHL) $(PATHTR)
COMPILE = gcc -c COMPILE = gcc -c
CROSSCOMPILE = arm-linux-gnueabihf-gcc -c CROSSCOMPILE = arm-linux-gnueabihf-gcc -c
@ -112,7 +112,7 @@ $(PATHR)%.txt: $(PATHB)%.$(TARGET_EXTENSION)
-./$< > $@ 2>&1 -./$< > $@ 2>&1
$(PATHB)test_%.$(TARGET_EXTENSION): $(PATHO)test_%.o $(PATHO)test_%_Runner.o $(PATHO)%.t.o $(PATHU)unity.o $(PATHB)test_%.$(TARGET_EXTENSION): $(PATHO)test_%.o $(PATHO)test_%_Runner.o $(PATHO)%.t.o $(PATHU)unity.o
$(TARLINK) -o $@ $^ $(TARLINK) $(TARLINKFLAGS) -o $@ $^
$(PATHO)%.o: $(PATHTR)%.c $(PATHO)%.o: $(PATHTR)%.c
$(TARCOMPILE) $(TARFLAGS) $< -o $@ $(TARCOMPILE) $(TARFLAGS) $< -o $@
@ -153,6 +153,9 @@ $(PATHO):
$(PATHR): $(PATHR):
$(MKDIR) $(PATHR) $(MKDIR) $(PATHR)
$(PATHTR):
$(MKDIR) $(PATHTR)
clean: clean:
$(CLEANUP) $(PATHO)*.o $(CLEANUP) $(PATHO)*.o
$(CLEANUP) $(PATHB)*.$(TARGET_EXTENSION) $(CLEANUP) $(PATHB)*.$(TARGET_EXTENSION)

362
lib/circ_buff.c

@ -1,362 +0,0 @@
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include "circ_buff.h"
// Defines the circular buffer structure
struct circ_buf_t {
char **buffer;
size_t head;
size_t tail;
size_t max; // of the buffer
size_t el_size;
bool full;
};
// Private Functions
unit_static void advance_pointer(cbuf_handle_t cbuf) {
assert(cbuf);
if(cbuf->full) {
cbuf->tail = (cbuf->tail + 1) % cbuf->max;
}
cbuf->head = (cbuf->head + 1) % cbuf->max;
// We mark full because we will advance tail on the next time around
cbuf->full = (cbuf->head == cbuf->tail);
}
unit_static void retreat_pointer(cbuf_handle_t cbuf) {
assert(cbuf);
cbuf->full = false;
cbuf->tail = (cbuf->tail + 1) % cbuf->max;
}
// APIs
cbuf_handle_t circ_buf_init(char **buffer, size_t size, size_t element_size) {
assert(buffer && size);
cbuf_handle_t cbuf = malloc(sizeof(circ_buf_t));
assert(cbuf);
cbuf->buffer = buffer;
cbuf->max = size;
cbuf->el_size = element_size;
circ_buf_reset(cbuf);
assert(circ_buf_empty(cbuf));
return cbuf;
}
void circ_buf_free(cbuf_handle_t cbuf) {
assert(cbuf);
free(cbuf);
}
void circ_buf_reset(cbuf_handle_t cbuf) {
assert(cbuf);
cbuf->head = 0;
cbuf->tail = 0;
cbuf->full = false;
}
size_t circ_buf_size(cbuf_handle_t cbuf) {
assert(cbuf);
size_t size = cbuf->max;
if(!cbuf->full) {
if(cbuf->head >= cbuf->tail) {
size = (cbuf->head - cbuf->tail);
}
else {
size = (cbuf->max + cbuf->head - cbuf->tail);
}
}
return size;
}
size_t circ_buf_capacity(cbuf_handle_t cbuf) {
assert(cbuf);
return cbuf->max;
}
void circ_buf_put(cbuf_handle_t cbuf, const char *data) {
assert(cbuf && cbuf->buffer);
strcpy(cbuf->buffer[cbuf->head], data);
advance_pointer(cbuf);
}
void circ_buf_mul_add(cbuf_handle_t cbuf, char **data, uint8_t size,
int (*compar)(const void *, const void *)) {
assert(cbuf && data && cbuf->buffer);
qsort(data, size, sizeof(char*), compar);
char *last_element = (char*) malloc(circ_buf_element_size(cbuf) * sizeof(char));
for (uint8_t i = 0; i < size; ++i) {
circ_buf_read(cbuf, 0, last_element);
if (compar(&data[i], &last_element) < 0) {
continue;
}
circ_buf_put(cbuf, data[i]);
}
free(last_element);
int end_buffer_size = circ_buf_size(cbuf);
char **temp_array = (char **) malloc(end_buffer_size * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < end_buffer_size; ++buff_el) {
temp_array[buff_el] = (char *) malloc(circ_buf_element_size(cbuf) * sizeof(char));
circ_buf_get(cbuf, temp_array[buff_el]);
}
qsort(temp_array, end_buffer_size, sizeof(char*), compar);
for (uint8_t i = 0; i < end_buffer_size; ++i) {
circ_buf_put(cbuf, temp_array[i]);
}
for (uint8_t buff_el = 0; buff_el < end_buffer_size; ++buff_el) {
free(temp_array[buff_el]);
}
free(temp_array);
}
int circ_buf_get(cbuf_handle_t cbuf, char *data) {
assert(cbuf && data && cbuf->buffer);
int r = -1;
if(!circ_buf_empty(cbuf)) {
strcpy(data, cbuf->buffer[cbuf->tail]);
retreat_pointer(cbuf);
r = 0;
}
return r;
}
int circ_buf_read(cbuf_handle_t cbuf, size_t position, char *data) {
assert(cbuf && data && cbuf->buffer && (position < circ_buf_size(cbuf)));
int r = -1;
if(!circ_buf_empty(cbuf)) {
strcpy(data, cbuf->buffer[(cbuf->tail + position) % cbuf->max]);
r = 0;
}
return r;
}
void diff_bufs(cbuf_handle_t cbuf1, cbuf_handle_t cbuf2,
char ***add1, char ***add2) {
assert(cbuf1 && cbuf2 &&
(circ_buf_element_size(cbuf1) == circ_buf_element_size(cbuf2)) &&
(circ_buf_capacity(cbuf1) == circ_buf_capacity(cbuf2)));
// Initializes the diff arrays
(*add1) = (char **) malloc(circ_buf_capacity(cbuf2) * sizeof(char *));
(*add2) = (char **) malloc(circ_buf_capacity(cbuf1) * sizeof(char *));
char *curr_str1 = (char*) malloc(circ_buf_element_size(cbuf1) * sizeof(char));
char *curr_str2 = (char*) malloc(circ_buf_element_size(cbuf2) * sizeof(char));
/*uint8_t diff_array_index = 0;
for (uint8_t i = 0; i < circ_buf_size(cbuf1); ++i) {
// Reads current element of cbuf1
circ_buf_read(cbuf1, i, curr_str1);
bool element_exists = false;
for (uint8_t j = 0; j < circ_buf_size(cbuf2); ++j) {
circ_buf_read(cbuf2, j, curr_str2);
// Checks against cbuf2 elements
if (!strcmp(curr_str2, curr_str1)) {
element_exists = true;
break;
}
}
if (!element_exists) {
(*add2)[diff_array_index] = (char*) malloc(circ_buf_element_size(cbuf1) * sizeof(char));
strcpy((*add2)[diff_array_index], curr_str1);
++diff_array_index;
}
}
(*add1)[diff_array_index] = (char*) malloc(circ_buf_element_size(cbuf1) * sizeof(char));
strcpy((*add1)[diff_array_index], EOB);
diff_array_index = 0;
for (uint8_t i = 0; i < circ_buf_size(cbuf2); ++i) {
// Reads current element of cbuf2
circ_buf_read(cbuf2, i, curr_str2);
bool element_exists = false;
for (uint8_t j = 0; j < circ_buf_size(cbuf1); ++j) {
circ_buf_read(cbuf1, j, curr_str1);
// Checks against cbuf1 elements
if (!strcmp(curr_str1, curr_str2)) {
element_exists = true;
break;
}
}
if (!element_exists) {
(*add1)[diff_array_index] = (char*) malloc(circ_buf_element_size(cbuf2) * sizeof(char));
strcpy((*add1)[diff_array_index], curr_str2);
++diff_array_index;
}
}
(*add2)[diff_array_index] = (char*) malloc(circ_buf_element_size(cbuf2) * sizeof(char));
strcpy((*add2)[diff_array_index], EOB);*/
uint8_t cbuf1_idx = 0, cbuf2_idx = 0, add1_arr_idx = 0, add2_arr_idx = 0;
while ((cbuf1_idx < circ_buf_size(cbuf1)) &&
(cbuf2_idx < circ_buf_size(cbuf2))) {
circ_buf_read(cbuf1, cbuf1_idx, curr_str1);
circ_buf_read(cbuf2, cbuf2_idx, curr_str2);
int strcmp_res = strcmp(curr_str1, curr_str2);
if (!strcmp_res) {
++cbuf1_idx;
++cbuf2_idx;
} else { // TODO: change the inner comparisons (strtok etc)
if (strcmp_res < 0) {
(*add2)[add2_arr_idx] = (char*) malloc(circ_buf_element_size(cbuf2) * sizeof(char));
strcpy((*add2)[add2_arr_idx], curr_str1);
++add2_arr_idx;
++cbuf1_idx;
}
else if (strcmp_res > 0) {
(*add1)[add1_arr_idx] = (char*) malloc(circ_buf_element_size(cbuf1) * sizeof(char));
strcpy((*add1)[add1_arr_idx], curr_str2);
++add1_arr_idx;
++cbuf2_idx;
}
}
}
while (cbuf1_idx < circ_buf_size(cbuf1)) {
(*add2)[add2_arr_idx] = (char*) malloc(circ_buf_element_size(cbuf2) * sizeof(char));
circ_buf_read(cbuf1, cbuf1_idx, curr_str1);
strcpy((*add2)[add2_arr_idx], curr_str1);
++add2_arr_idx;
++cbuf1_idx;
}
while (cbuf2_idx < circ_buf_size(cbuf2)) {
(*add1)[add1_arr_idx] = (char*) malloc(circ_buf_element_size(cbuf1) * sizeof(char));
circ_buf_read(cbuf2, cbuf2_idx, curr_str2);
strcpy((*add1)[add1_arr_idx], curr_str2);
++add1_arr_idx;
++cbuf2_idx;
}
(*add1)[add1_arr_idx] = (char*) malloc(circ_buf_element_size(cbuf1) * sizeof(char));
strcpy((*add1)[add1_arr_idx], EOB);
(*add2)[add2_arr_idx] = (char*) malloc(circ_buf_element_size(cbuf2) * sizeof(char));
strcpy((*add2)[add2_arr_idx], EOB);
free(curr_str1);
free(curr_str2);
/*uint8_t i = 0;
printf("add1:\n");
while (strcmp((*add1)[i], EOB)) {
printf("%s\n", (*add1)[i]);
++i;
}
i = 0;
printf("add2:\n");
while (strcmp((*add2)[i], EOB)) {
printf("%s\n", (*add2)[i]);
++i;
}*/
}
int circ_buf_serialize(cbuf_handle_t cbuf, char **serialized) {
char *temp = (char*) malloc(circ_buf_element_size(cbuf) * sizeof(char));
const char separator[2] = "\r";
uint8_t char_sum = circ_buf_size(cbuf) - 1;
uint8_t i;
for (i = 0; i < circ_buf_size(cbuf); ++i) {
circ_buf_read(cbuf, i, temp);
char_sum += strlen(temp);
}
(*serialized) = (char*) malloc((char_sum + 1) * sizeof(char));
strcpy((*serialized), "");
for (i = 0; i < circ_buf_size(cbuf) - 1; ++i) {
circ_buf_read(cbuf, i, temp);
strcat((*serialized), temp);
strcat((*serialized), separator);
}
circ_buf_read(cbuf, i, temp);
strcat((*serialized), temp);
free(temp);
return strlen((*serialized));
}
int circ_buf_deserialize(cbuf_handle_t cbuf, const char *serialized) {
char *str = calloc(strlen(serialized) + 1, sizeof(char));
strcpy(str, serialized);
const char separator[2] = "\r";
char *token;
token = strtok(str, separator);
while (token != NULL) {
circ_buf_put(cbuf, token);
token = strtok(NULL, separator);
}
return circ_buf_size(cbuf);
}
bool circ_buf_empty(cbuf_handle_t cbuf) {
assert(cbuf);
return (!cbuf->full && (cbuf->head == cbuf->tail));
}
bool circ_buf_full(cbuf_handle_t cbuf) {
assert(cbuf);
return cbuf->full;
}
size_t circ_buf_element_size(cbuf_handle_t cbuf) {
assert(cbuf);
return cbuf->el_size;
}

80
lib/circ_buff.h

@ -1,80 +0,0 @@
/*
* Implementation of a simple circular buffer data structure.
* Based on the example and guide found here:
* https://embeddedartistry.com/blog/2017/4/6/circular-buffers-in-cc
*/
#ifndef CIRC_BUFF_H_
#define CIRC_BUFF_H_
#include <stdbool.h>
#define EOB "-1"
// Circular buffer structure
typedef struct circ_buf_t circ_buf_t;
// and handle type
typedef circ_buf_t *cbuf_handle_t;
#ifdef TEST //This is a test build
// Makes private functions reachable by the tester
#define unit_static
unit_static void advance_pointer(cbuf_handle_t cbuf);
unit_static void retreat_pointer(cbuf_handle_t cbuf);
#else
#define unit_static static
#endif
// Initializes a circular buffer structure and returns the circular buffer handle.
// Pass in a storage buffer and size.
cbuf_handle_t circ_buf_init(char **buffer, size_t size, size_t element_size);
// Frees a circular buffer structure. Does not free data buffer!
void circ_buf_free(cbuf_handle_t cbuf);
// Resets the circular buffer to empty, head == tail. Data not cleared!
void circ_buf_reset(cbuf_handle_t cbuf);
// Adds data to the end of the buffer, even if the buffer is full. Old data is overwritten.
void circ_buf_put(cbuf_handle_t cbuf, const char *data);
// Adds multiple entries to the buffer, keeping the data in ascending order according to the
// function compar provided in the parameters. If the buffer is full, smallest data are overwritten.
// Doesn't check for duplicates!
void circ_buf_mul_add(cbuf_handle_t cbuf, char **data, uint8_t size,
int (*compar)(const void *, const void *));
// Retrieves a value from the buffer.
int circ_buf_get(cbuf_handle_t cbuf, char *data);
// Reads a value from the buffer. Does NOT retrieve, size is not reduced!
int circ_buf_read(cbuf_handle_t cbuf, size_t position, char *data);
// Compares the buffers cbuf1 and cbuf2. Elements present on cbuf1 that do not
// exist on cbuf2 are added to the array add2, elements present on cbuf2 that do
// not exist on cbuf1 are added to the array add1.
// Both buffers must be ordered on the same way!
void diff_bufs(cbuf_handle_t cbuf1, cbuf_handle_t cbuf2,
char ***add1, char ***add2);
// Serializes the whole buffer to a single string
int circ_buf_serialize(cbuf_handle_t cbuf, char **serialized);
// De-serializes a string to a buffer
int circ_buf_deserialize(cbuf_handle_t cbuf, const char *serialized);
// Checks if the buffer is empty.
bool circ_buf_empty(cbuf_handle_t cbuf);
// Checks if the buffer is full.
bool circ_buf_full(cbuf_handle_t cbuf);
// Returns the capacity of the buffer.
size_t circ_buf_capacity(cbuf_handle_t cbuf);
// Returns the number of elements stored in the buffer.
size_t circ_buf_size(cbuf_handle_t cbuf);
// Returns the size of each element.
size_t circ_buf_element_size(cbuf_handle_t cbuf);
#endif //CIRC_BUFF_H_

353
lib/helpers.c

@ -1,353 +0,0 @@
#include "helpers.h"
/*
* Function based on this example:
* http://man7.org/linux/man-pages/man3/getifaddrs.3.html#EXAMPLE
*/
int get_own_id(void) {
int id = -1;
struct ifaddrs *ifaddr, *ifa;
int family, s, n;
char host[NI_MAXHOST];
if (getifaddrs(&ifaddr) == -1) {
perror("Couldn't get network interfaces.");
exit(EXIT_FAILURE);
}
// Walks through linked list, maintaining head pointer so we can free list later
for (ifa = ifaddr, n = 0; ifa != NULL; ifa = ifa->ifa_next, n++) {
if (ifa->ifa_addr == NULL) {
continue;
}
family = ifa->ifa_addr->sa_family;
// Gets the address of an AF_INET* interface address
if (family == AF_INET || family == AF_INET6) {
s = getnameinfo(ifa->ifa_addr,
(family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6),
host, NI_MAXHOST, NULL, 0, NI_NUMERICHOST);
if (s != 0) {
printf("getnameinfo() failed: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);
}
id = extract_id_from_ip(host);
if (id < 0) {
continue;
}
break;
}
}
freeifaddrs(ifaddr);
return(id);
}
int extract_id_from_ip(const char *ip) {
const char separator[2] = ".";
int id = 0;
char *rest, *token, *ip_cp;
ip_cp = malloc(strlen(ip) * sizeof(char));
strcpy(ip_cp, ip);
rest = ip_cp;
token = strtok_r(rest, separator, &rest);
if (!token || atoi(token) != 10) {
return -1;
}
token = strtok_r(rest, separator, &rest);
if (!token || atoi(token) != 0) {
return -1;
}
token = strtok_r(rest, separator, &rest);
if (!token) {
return -1;
}
id = atoi(token) * 100;
token = strtok_r(rest, separator, &rest);
if (!token) {
return -1;
}
id += atoi(token);
return id;
}
void set_timer_and_handler(void (*handler)(int), long int timer_interval) {
struct itimerval interval_timer;
struct sigaction signal_action;
// Installs handler as the signal handler for SIGALRM
memset(&signal_action, 0, sizeof(signal_action));
signal_action.sa_handler = handler;
if (sigaction(SIGALRM, &signal_action, NULL)) {
perror("Couldn't install function handler for SIGALRM signals.");
exit(EXIT_FAILURE);
}
// Sets an interval timer to deliver a SIGALRM signal every timer_interval seconds
interval_timer.it_interval.tv_usec = 0;
interval_timer.it_interval.tv_sec = timer_interval;
interval_timer.it_value.tv_usec = 0;
interval_timer.it_value.tv_sec = timer_interval;
if (setitimer(ITIMER_REAL, &interval_timer, NULL) == -1) {
perror("Couldn't set timer.");
exit(EXIT_FAILURE);
}
}
void enable_echo_broadcast(void) {
if (system("echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts") < 0) {
perror("Couldn't allow echo broadcasts.");
exit(EXIT_FAILURE);
}
}
/*
* Function based on this snippet:
* https://codereview.stackexchange.com/a/58107
*/
void search_for_neighbors(node_handle_t **neighbors, uint16_t *num_neighbors, uint16_t port) {
// Broadcasts ping
if (system("ping -b 10.255.255.255 -c 3 > /dev/null") < 0) {
perror("Couldn't broadcast echo.");
exit(EXIT_FAILURE);
}
// Reads the ARP file checking for connected devices
FILE *arpCache = fopen(ARP_CACHE, "r");
if (!arpCache) {
perror("ARP Cache: Failed to open file \"" ARP_CACHE "\"");
exit(EXIT_FAILURE);
}
// Ignores the first line, which contains the header
char header[ARP_BUFFER_LEN];
if (!fgets(header, sizeof(header), arpCache)) {
perror("Couldn't read ARP file header.");
exit(EXIT_FAILURE);
}
// Extracts IP addresses found in the file
char ipAddr[ARP_BUFFER_LEN];
char **neighbors_ips = (char **) malloc(sizeof(char *));
if (!neighbors_ips) {
perror("Unable to allocate memory for neighbor IP.");
exit(EXIT_FAILURE);
}
int count = 0;
while (1 == fscanf(arpCache, ARP_LINE_FORMAT, ipAddr)) {
++count;
if (count > 1) {
char **r_neighbors_ips = realloc(neighbors_ips, count * sizeof(char *));
if (!r_neighbors_ips) {
free(r_neighbors_ips);
perror("Unable to reallocate memory for neighbor IP.");
exit(EXIT_FAILURE);
}
neighbors_ips = r_neighbors_ips;
}
neighbors_ips[count - 1] = (char *) malloc(ARP_BUFFER_LEN * sizeof(char));
strcpy(neighbors_ips[count - 1], ipAddr);
}
// Allocates memory for the new neighbors structs
if (!(*num_neighbors)) {
// Neighbors array came empty
(*neighbors) = (node_handle_t *) malloc(count * sizeof(node_handle_t));
if (!neighbors_ips) {
perror("Unable to allocate memory for nodes.");
exit(EXIT_FAILURE);
}
} else {
node_handle_t *r_neighbors = realloc((*neighbors), count * sizeof(node_handle_t));
if (!r_neighbors) {
free(r_neighbors);
perror("Unable to reallocate memory for nodes.");
exit(EXIT_FAILURE);
}
(*neighbors) = r_neighbors;
}
// Adds new event timestamps to neighbors structs
for (uint8_t i = 0; i < count; ++i) {
bool found_flag = false;
for (uint8_t j = 0; j < (*num_neighbors); ++j) {
if (!strcmp(inet_ntoa(node_get_addr((*neighbors)[j]).sin_addr),
neighbors_ips[i])) {
bool node_alive = check_node_alive(neighbors_ips[i]);
node_add_timestamp((*neighbors)[i], time(NULL), node_alive);
found_flag = true;
break;
}
}
if (!found_flag) {
// New node found!
printf("Adding %s\n", neighbors_ips[i]);
struct sockaddr_in peer_name;
init_sockaddr(&peer_name, neighbors_ips[i], port);
(*neighbors)[(*num_neighbors)++] = node_init(peer_name);
}
}
if (!((*num_neighbors) == count)) {
(*num_neighbors) = count;
}
fclose(arpCache);
}
void create_message(node_handle_t *neighbors, char *new_message, int own_id,
uint8_t num_neighbors, uint16_t max_message_length) {
node_handle_t random_node = neighbors[rand() % (num_neighbors)];
int peer_id = extract_id_from_ip(inet_ntoa((node_get_addr(random_node)).sin_addr));
if (peer_id < 0) {
perror("Couldn't extract own ID.");
exit(EXIT_FAILURE);
}
snprintf(new_message, max_message_length, "%04d_%04d_%ld_%s", own_id, peer_id, time(NULL),
"It's amazing... It's fantastic!");
}
bool check_node_alive(const char *ipv4) {
char command[64];
snprintf(command, 64, "ping %s -c 1 -W 1 | grep \"1 received\" > /dev/null", ipv4);
int call_res = system(command);
if (call_res < 0) {
perror("Couldn't ping node.");
exit(EXIT_FAILURE);
}
return call_res == 0;
}
/*
* Function based on this example:
* https://www.gnu.org/software/libc/manual/html_node/Inet-Example.html#Inet-Example
*/
int create_socket_and_listen(uint16_t port, uint8_t backlog_size) {
int in_sock;
struct sockaddr_in own_name;
// Creates the socket
in_sock = socket(PF_INET, SOCK_STREAM, 0);
if (in_sock < 0) {
perror("Couldn't create the socket.");
exit(EXIT_FAILURE);
}
// Gives the socket a name
own_name.sin_family = AF_INET;
own_name.sin_port = htons(port);
own_name.sin_addr.s_addr = htonl(INADDR_ANY);
// Binds own address structure to socket
if (bind(in_sock, (struct sockaddr *) &own_name, sizeof(own_name)) < 0) {
perror("Couldn't bind the address structure to the socket.");
exit(EXIT_FAILURE);
}
if (listen(in_sock, backlog_size) < 0) {
perror("Couldn't listen for connections on the socket.");
exit(EXIT_FAILURE);
}
return in_sock;
}
void send_message(struct sockaddr_in peer_name, const char *message) {
int out_sock;
// Creates the socket
out_sock = socket(PF_INET, SOCK_STREAM, 0);
if (out_sock < 0) {
perror("Couldn't create the socket.");
exit(EXIT_FAILURE);
}
// Connects to the peer
if (connect(out_sock, (struct sockaddr *) &peer_name, sizeof(peer_name))) {
printf("Couldn't connect to the peer.\n");
} else {
// Sends data to the peer
write_to_peer(out_sock, message);
}
close(out_sock);
}
void accept_connection(int sock, struct sockaddr_in *peer_name, fd_set *active_fd_set) {
size_t peer_name_size = sizeof((*peer_name));
int comm_socket = accept(sock, (struct sockaddr *) peer_name, &peer_name_size);
if (comm_socket < 0) {
perror("Couldn't accept the connection.");
exit(EXIT_FAILURE);
}
fprintf(stderr, "Connected to host %s, port %hd.\n",
inet_ntoa((*peer_name).sin_addr), ntohs((*peer_name).sin_port));
FD_SET(comm_socket, active_fd_set);
}
void write_to_peer(int file_desc, const char *message) {
int num_bytes = write(file_desc, message, strlen(message) + 1);
if (num_bytes < 0) {
perror("Couldn't write to peer.");
exit(EXIT_FAILURE);
}
}
int read_from_peer(int file_des, uint16_t max_line) {
char buffer[max_line];
int num_bytes;
num_bytes = read(file_des, buffer, sizeof(buffer));
if (num_bytes < 0) {
perror("Couldn't read from peer.");
exit(EXIT_FAILURE);
} else if (num_bytes == 0)
// End-of-file
return -1;
else {
fprintf(stderr, "Got message: `%s'\n", buffer);
return 0;
}
}
/*
* Function based on this example:
* https://www.gnu.org/software/libc/manual/html_node/Inet-Example.html#Inet-Example
*/
void init_sockaddr(struct sockaddr_in *peer_name, const char *ipv4, uint16_t port) {
struct hostent *hostinfo;
peer_name->sin_family = AF_INET;
peer_name->sin_port = htons(port);
hostinfo = gethostbyname(ipv4);
if (hostinfo == NULL) {
fprintf(stderr, "Unknown host %s.\n", ipv4);
exit(EXIT_FAILURE);
}
peer_name->sin_addr = *(struct in_addr *) hostinfo->h_addr_list[0];
}

65
lib/helpers.h

@ -1,65 +0,0 @@
#ifndef HELPERS_H_
#define HELPERS_H_
#define _GNU_SOURCE
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <sys/select.h>
#include <ifaddrs.h>
#include <linux/if_link.h>
#include <sys/time.h>
#include <signal.h>
#include <string.h>
#include <sys/wait.h>
#include "node.h"
// Macros to turn a numeric macro into a string literal
#define xstr(s) str(s)
#define str(s) #s
// Neighbor discovery related definitions
#define ARP_CACHE "/proc/net/arp"
#define ARP_STRING_LEN 1023
#define ARP_BUFFER_LEN (ARP_STRING_LEN + 1)
#define PING_BUFFER_LEN 1024
// Format for fscanf() to read the 1st field of ARP
#define ARP_LINE_FORMAT "%" xstr(ARP_STRING_LEN) "s %*s %*s %*s %*s %*s"
int get_own_id(void);
int extract_id_from_ip(const char *ip);
void set_timer_and_handler(void (*handler)(int), long int timer_interval);
void enable_echo_broadcast(void);
void search_for_neighbors(node_handle_t **neighbors, uint16_t *num_neighbors, uint16_t port);
void create_message(node_handle_t *neighbors, char *new_message, int own_id,
uint8_t num_neighbors, uint16_t max_message_length);
bool check_node_alive(const char *ipv4);
int create_socket_and_listen(uint16_t port, uint8_t backlog_size);
void send_message(struct sockaddr_in peer_name, const char *message);
void accept_connection(int sock, struct sockaddr_in *client_name, fd_set *active_fd_set);
void write_to_peer(int filedes, const char *message);
int read_from_peer(int file_des, uint16_t max_line);
void init_sockaddr(struct sockaddr_in *name, const char *hostname, uint16_t port);
#endif //HELPERS_H_

132
lib/message.c

@ -0,0 +1,132 @@
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "message.h"
/* Private functions */
// Defines the node structure
struct message_t {
char *message;
uint16_t received_from, *sent_to;
observer_func *observers;
int message_length, num_sent_to, num_observers;
};
unit_static void message_state_changed(message_handle_t message_handle) {
assert(message_handle);
for (uint16_t i = 0; i < message_handle->num_observers; ++i) {
(message_handle->observers[i])();
}
}
/* API */
message_handle_t message_init(const char *message, int message_length, uint16_t received_from) {
//assert(addr);
assert(message_length <= MAX_MESSAGE_LENGTH);
message_handle_t message_handle = malloc(sizeof(message_t));
assert(message_handle);
message_handle->message = malloc((message_length + 1) * sizeof(char));
strcpy(message_handle->message, message);
message_handle->message_length = message_length;
message_handle->received_from = received_from;
message_handle->sent_to = NULL;
message_handle->num_sent_to = 0;
message_handle->observers = NULL;
message_handle->num_observers = 0;
return message_handle;
}
void message_free(message_handle_t message_handle) {
assert(message_handle);
free(message_handle->sent_to);
free(message_handle->observers);
free(message_handle->message);
free(message_handle);
}
void message_add_sent_to(message_handle_t message_handle, uint16_t sent_to) {
assert(message_handle);
if (message_handle->sent_to == NULL) {
message_handle->sent_to = (uint16_t *) malloc(sizeof(uint16_t));
if (!message_handle->sent_to) {
perror("Unable to allocate memory for message receivers.");
exit(EXIT_FAILURE);
}
++(message_handle->num_sent_to);
} else {
uint16_t *r_sent_to = realloc(message_handle->sent_to, ++(message_handle->num_sent_to) * sizeof(uint16_t));
if (!r_sent_to) {
free(r_sent_to);
perror("Unable to reallocate memory for message receivers.");
exit(EXIT_FAILURE);
}
message_handle->sent_to = r_sent_to;
}
message_handle->sent_to[message_handle->num_sent_to - 1] = sent_to;
message_state_changed(message_handle);
}
char *message_get(message_handle_t message_handle, int *message_length) {
assert(message_handle);
char *message = (char *) malloc((message_handle->message_length + 1) * sizeof(char));
if (!message) {
perror("Unable to allocate memory for message return.");
exit(EXIT_FAILURE);
}
strcpy(message, message_handle->message);
(*message_length) = message_handle->message_length;
return message;
}
bool message_sent_to(message_handle_t message_handle, uint16_t node) {
assert(message_handle);
for (uint16_t i = 0; i < message_handle->num_sent_to; ++i) {
if (message_handle->sent_to[i] == node) {
return true;
}
}
return false;
}
void message_attach_observer(message_handle_t message_handle, observer_func observer) {
assert(message_handle);
if (message_handle->observers == NULL) {
message_handle->observers = (observer_func *) malloc(sizeof(observer_func));
if (!message_handle->observers) {
perror("Unable to allocate memory for message observers.");
exit(EXIT_FAILURE);
}
++(message_handle->num_observers);
} else {
uint16_t *r_observers = realloc(message_handle->observers,
++(message_handle->num_observers) * sizeof(observer_func));
if (!r_observers) {
free(r_observers);
perror("Unable to reallocate memory for message observers.");
exit(EXIT_FAILURE);
}
}
message_handle->observers[message_handle->num_observers - 1] = observer;
}

44
lib/message.h

@ -0,0 +1,44 @@
#ifndef MESSAGE_H_
#define MESSAGE_H_
#include <stdbool.h>
#include <stdint.h>
#define MAX_MESSAGE_LENGTH 277
// Message structure
typedef struct message_t message_t;
// and handle type
typedef message_t *message_handle_t;
typedef void (*observer_func)(void);
#ifdef TEST //This is a test build
// Makes private functions reachable by the tester
#define unit_static
// Calls all observer functions attached to this message.
unit_static void message_state_changed(message_handle_t message_handle);
#else
#define unit_static static
#endif
// Initializes a message structure and returns the message handle. User must provide the length of
// the message without the null termination character (strlen);
message_handle_t message_init(const char *message, int message_length, uint16_t received_from);
// Frees a message structure.
void message_free(message_handle_t message_handle);
// Adds an new receiver to the message.
void message_add_sent_to(message_handle_t message_handle, uint16_t sent_to);
// Returns the message.
char *message_get(message_handle_t message_handle, int *message_length);
// Returns true if the message has been previously sent to this node, false otherwise.
bool message_sent_to(message_handle_t message_handle, uint16_t node);
// Attaches an observer function to the message.
void message_attach_observer(message_handle_t message_handle, observer_func observer);
#endif //MESSAGE_H_

124
lib/node.c

@ -1,124 +0,0 @@
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "node.h"
// Defines the node structure
struct node_t {
struct sockaddr_in addr;
uint64_t **events;
uint64_t appearance_duration;
uint8_t events_size;
node_status _node_status;
};
node_handle_t node_init(struct sockaddr_in addr) {
//assert(addr);
node_handle_t node = malloc(sizeof(node_t));
assert(node);
node->addr = addr;
node->events_size = 0;
node->events = (uint64_t **) malloc(2 * sizeof(uint64_t));
node->events[0] = (uint64_t *) malloc(sizeof(uint64_t));
node->events[1] = (uint64_t *) malloc(sizeof(uint64_t));
node->events[0][0] = 0;
node->events[1][0] = 0;
node->appearance_duration = 0;
node->_node_status = NODE_INITIALIAZED;
return node;
}
void node_free(node_handle_t node) {
assert(node);
free(node->events[0]);
free(node->events[1]);
free(node->events);
free(node);
}
void node_add_timestamp(node_handle_t node, time_t timestamp, bool visible) {
assert(node && timestamp);
if ((visible && !node->events[1][node->events_size - 1]) ||
(!visible && node->events[1][node->events_size - 1])) {
return;
}
if (visible) {
int *realloc_r = realloc(node->events[0], node->events_size + 1);
if (!realloc_r) {
node_free(node);
perror("Error trying to reallocate memory for event timestamps!");
exit(EXIT_FAILURE);
}
realloc_r = realloc(node->events[1], node->events_size + 1);
if (!realloc_r) {
node_free(node);
perror("Error trying to reallocate memory for event timestamps!");
exit(EXIT_FAILURE);
}
node->events[0][node->events_size] = timestamp;
node->events[1][node->events_size] = 0;
node->_node_status = NODE_PRESENT;
++node->events_size;
} else {
node->events[1][node->events_size - 1] = timestamp;
node->_node_status = NODE_GONE;
node->appearance_duration += node->events[1][node->events_size - 1] -
node->events[0][node->events_size - 1];
}
}
struct sockaddr_in node_get_addr(node_handle_t node) {
assert(node);
return node->addr;
}
enum node_status node_get_status(node_handle_t node) {
assert(node);
return node->_node_status;
}
uint8_t node_get_latest_appearance_duration(node_handle_t node) {
assert(node);
if (node->_node_status == NODE_INITIALIAZED) {
return 0;
} else if (node->events[1][node->events_size - 1] == 0) {
return (uint64_t)time(NULL) - node->events[0][node->events_size - 1];
} else {
return node->events[1][node->events_size - 1] - node->events[0][node->events_size - 1];
}
}
uint8_t node_get_total_appearance_duration(node_handle_t node) {
assert(node);
return node->appearance_duration;
}
uint8_t node_get_event_table(node_handle_t node, time_t ***event_table) {
assert(node && event_table);
if (node->events_size < 1) {
return 0;
}
(*event_table) = (time_t **) malloc(2 * sizeof(time_t *));
(*event_table)[0] = (time_t *) malloc(node->events_size * sizeof(time_t));
(*event_table)[1] = (time_t *) malloc(node->events_size * sizeof(time_t));
memcpy((*event_table)[0], node->events[0], node->events_size * sizeof(time_t));
memcpy((*event_table)[1], node->events[1], node->events_size * sizeof(time_t));
return node->events_size;
}

59
lib/node.h

@ -1,59 +0,0 @@
#ifndef NODE_H_
#define NODE_H_
#include <stdbool.h>
#include <time.h>
#include <arpa/inet.h>
// Node structure
typedef struct node_t node_t;
// and handle type
typedef node_t *node_handle_t;
typedef enum node_status { NODE_INITIALIAZED, NODE_PRESENT, NODE_GONE } node_status;
#ifdef TEST //This is a test build
// Makes private functions reachable by the tester
#define unit_static
#else
#define unit_static static
#endif
// Initializes a node structure and returns the node handle.
node_handle_t node_init(struct sockaddr_in addr);
// Frees a node structure.
void node_free(node_handle_t node);
// Adds an event timestamp to the node. Either the (re)appearance or the disappearance of the node.
void node_add_timestamp(node_handle_t node, time_t timestamp, bool visible);
// Returns the address of the node
struct sockaddr_in node_get_addr(node_handle_t node);
node_status node_get_status(node_handle_t node);
//uint8_t node_get_appear_count(node_handle_t node);
//uint8_t node_get_disappear_count(node_handle_t node);
//void node_get_latest_appear(node_handle_t node, );
//void node_get_latest_disappear(node_handle_t node, );
// Returns the duration (in seconds) of the latest stretch of time that this node has been visible.
uint8_t node_get_latest_appearance_duration(node_handle_t node);
// Returns the total duration (in seconds) of time that this node was visible.
uint8_t node_get_total_appearance_duration(node_handle_t node);
// Returns the event timestamps table for this node.
uint8_t node_get_event_table(node_handle_t node, time_t ***event_table);
// Serializes the whole node to a single string
//int circ_buf_serialize(node_handle_t node, char **serialized);
// De-serializes a string to a node
//int circ_buf_deserialize(node_handle_t node, const char *serialized);
#endif //NODE_H_

95
src/zaqar.c

@ -1,95 +0,0 @@
#include "zaqar.h"
#define MESSAGE "You got mail!!! xo xo xo"
volatile sig_atomic_t sigalrm_flag = false;
int main(void) {
int in_sock, own_id;
fd_set active_fd_set, read_fd_set;
struct sockaddr_in peer_name;
node_handle_t *neighbors;
uint16_t num_neighbors = 0;
own_id = get_own_id();
if (own_id < 0) {
perror("Couldn't extract own ID.");
exit(EXIT_FAILURE);
}
// Enables echo broadcast pings
enable_echo_broadcast();
// Searches network for neighbors
search_for_neighbors(&neighbors, &num_neighbors, PORT);
// Sets a timer and handler to produce interrupts for sending messages
set_timer_and_handler(handle_alarm, TIMER_INTERVAL);
// Creates a socket and sets it up to accept connections
in_sock = create_socket_and_listen(PORT, BACKLOG_SIZE);
// Initializes the set of active sockets
// Clears the descriptor set
FD_ZERO(&active_fd_set);
// Sets socket in active readset
FD_SET(in_sock, &active_fd_set);
while (1) {
if (sigalrm_flag) {
// It's time to send a message!
char new_message[MAX_MESSAGE_LENGTH];
search_for_neighbors(&neighbors, &num_neighbors, PORT);
create_message(neighbors, new_message, own_id, num_neighbors, MAX_MESSAGE_LENGTH);
for (uint8_t i = 0; i < num_neighbors; ++i) {
if (node_get_status(neighbors[i]) == NODE_PRESENT) {
send_message(node_get_addr(neighbors[i]), new_message);
}
}
sigalrm_flag = false;
}
// Shallow copies the readset
read_fd_set = active_fd_set;
// Blocks until input arrives on one or more active sockets
if (select(FD_SETSIZE, &read_fd_set, NULL, NULL, NULL) < 0) {
// Handles the wake-up from alarm signal interrupts
if (sigalrm_flag) {
continue;
}
perror("Couldn't initiate synchronous I/O multiplexing.");
exit(EXIT_FAILURE);
}
// Services all the sockets with input pending
for (int i = 0; i < FD_SETSIZE; ++i) {
if (FD_ISSET(i, &read_fd_set)) {
if (i == in_sock) {
// Connection request on original socket
accept_connection(in_sock, &peer_name, &active_fd_set);
} else {
// Data arriving on an already-connected socket
if (read_from_peer(i, MAX_MESSAGE_LENGTH) < 0) {
close(i);
FD_CLR(i, &active_fd_set);
}
}
}
}
}
return 0;
}
void handle_alarm(int sig) {
if (sig != SIGALRM) {
return;
} else {
sigalrm_flag = true;
}
}

28
src/zaqar.h

@ -1,28 +0,0 @@
#ifndef ZAQAR_H_
#define ZAQAR_H_
#include <stdbool.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <sys/select.h>
#include <sys/signalfd.h>
#include "helpers.h"
#include "node.h"
#define TIMER_INTERVAL 10
#define PORT 5000
#define MAX_MESSAGE_LENGTH 277
#define BACKLOG_SIZE 2
void handle_alarm(int sig);
#endif //ZAQAR_H_

517
test/test_circ_buff.c

@ -1,517 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "unity.h"
#include "circ_buff.h"
#define BUFFER_SIZE 8
#define BUFFER_ELEMENT_SIZE 278
int compar(const void* entry1, const void* entry2) {
char **pstr1 = (char**)entry1, **pstr2 = (char**)entry2;
char *str1 = calloc(strlen(*pstr1) + 1, sizeof(char)),
*str2 = calloc(strlen(*pstr2) + 1, sizeof(char));
strcpy(str1, *pstr1);
strcpy(str2, *pstr2);
const char s[2] = "_";
strtok(str1, s);
char* rest = strtok(NULL, "");
int num1 = atoi(rest);
strtok(str2, s);
rest = strtok(NULL, "");
int num2 = atoi(rest);
free(str1);
free(str2);
return num1 - num2;
}
void free_buffer(char** buffer) {
for(uint8_t i = 0; i < BUFFER_SIZE; ++i) {
free(buffer[i]);
}
}
void test_circ_buf_init(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
TEST_ASSERT_NOT_NULL(circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE));
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_put(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i);
circ_buf_put(circ_buf, temp);
}
TEST_ASSERT_EQUAL_STRING_LEN("string_0", buffer[0], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_1", buffer[1], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_2", buffer[2], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_3", buffer[3], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_4", buffer[4], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_5", buffer[5], BUFFER_ELEMENT_SIZE);
for(uint8_t i = 0; i < BUFFER_SIZE; ++i) {
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i);
circ_buf_put(circ_buf, temp);
}
free(temp);
TEST_ASSERT_EQUAL_STRING_LEN("string_2", buffer[0], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_3", buffer[1], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_4", buffer[2], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_5", buffer[3], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_6", buffer[4], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_7", buffer[5], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_0", buffer[6], BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_STRING_LEN("string_1", buffer[7], BUFFER_ELEMENT_SIZE);
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_mul_add(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
char** to_add = (char **) malloc(5 * sizeof(char*));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i);
to_add[i] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
if (i < 5) {
snprintf(to_add[i], BUFFER_ELEMENT_SIZE, "string_%d", i + 10);
}
circ_buf_put(circ_buf, temp);
}
free(temp);
circ_buf_mul_add(circ_buf, to_add, 5, compar);
char* actual = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_3", actual, BUFFER_ELEMENT_SIZE);
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_4", actual, BUFFER_ELEMENT_SIZE);
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_5", actual, BUFFER_ELEMENT_SIZE);
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_10", actual, BUFFER_ELEMENT_SIZE);
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_11", actual, BUFFER_ELEMENT_SIZE);
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_12", actual, BUFFER_ELEMENT_SIZE);
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_13", actual, BUFFER_ELEMENT_SIZE);
circ_buf_get(circ_buf, actual);
TEST_ASSERT_EQUAL_STRING_LEN("string_14", actual, BUFFER_ELEMENT_SIZE);
free(actual);
circ_buf_free(circ_buf);
free(buffer);
}
void test_circ_buf_get(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i);
circ_buf_put(circ_buf, temp);
}
free(temp);
char* actual = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
char* expected = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
circ_buf_get(circ_buf, actual);
snprintf(expected, BUFFER_ELEMENT_SIZE, "string_%d", i);
TEST_ASSERT_EQUAL_STRING_LEN(expected, actual, BUFFER_ELEMENT_SIZE);
}
free(actual);
free(expected);
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_read(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i);
circ_buf_put(circ_buf, temp);
}
free(temp);
char* actual = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
char* expected = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
circ_buf_read(circ_buf, i, actual);
snprintf(expected, BUFFER_ELEMENT_SIZE, "string_%d", i);
TEST_ASSERT_EQUAL_STRING_LEN(expected, actual, BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE - 2, circ_buf_size(circ_buf));
}
free(actual);
free(expected);
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_serialize(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i);
circ_buf_put(circ_buf, temp);
}
free(temp);
char* serialized;
uint8_t serialized_length = circ_buf_serialize(circ_buf, &serialized);
TEST_ASSERT_EQUAL_UINT8(53, serialized_length);
char* expected = "string_0\rstring_1\rstring_2\rstring_3\rstring_4\rstring_5";
TEST_ASSERT_EQUAL_STRING_LEN(expected, serialized, 53);
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_deserialize(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
char* serialized = "string_0\rstring_1\rstring_2\rstring_3\rstring_4\rstring_5";
uint8_t deserialized_size = circ_buf_deserialize(circ_buf, serialized);
TEST_ASSERT_EQUAL_UINT8(6, deserialized_size);
char* actual = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
char* expected = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
circ_buf_get(circ_buf, actual);
snprintf(expected, BUFFER_ELEMENT_SIZE, "string_%d", i);
TEST_ASSERT_EQUAL_STRING_LEN(expected, actual, BUFFER_ELEMENT_SIZE);
}
free(actual);
free(expected);
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_empty(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
TEST_ASSERT_TRUE(circ_buf_empty(circ_buf));
for(uint8_t i = 0; i < BUFFER_SIZE; ++i) {
circ_buf_put(circ_buf, "Lorem ipsum");
}
TEST_ASSERT_FALSE(circ_buf_empty(circ_buf));
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < BUFFER_SIZE; ++i) {
circ_buf_get(circ_buf, temp);
}
free(temp);
TEST_ASSERT_TRUE(circ_buf_empty(circ_buf));
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_full(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
for(uint8_t i = 0; i < (BUFFER_SIZE - 1); ++i) {
circ_buf_put(circ_buf, "Lorem ipsum");
TEST_ASSERT_FALSE(circ_buf_full(circ_buf));
}
circ_buf_put(circ_buf, "Lorem ipsum");
TEST_ASSERT_TRUE(circ_buf_full(circ_buf));
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_capacity(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE, circ_buf_capacity(circ_buf));
circ_buf_put(circ_buf, "Lorem ipsum");
circ_buf_put(circ_buf, "Lorem ipsum");
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE, circ_buf_capacity(circ_buf));
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
circ_buf_get(circ_buf, temp);
free(temp);
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE, circ_buf_capacity(circ_buf));
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_size(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_INT8(0, circ_buf_size(circ_buf));
for(uint8_t i = 0; i < BUFFER_SIZE; ++i) {
circ_buf_put(circ_buf, "Lorem ipsum");
TEST_ASSERT_EQUAL_INT8(i + 1, circ_buf_size(circ_buf));
}
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < BUFFER_SIZE; ++i) {
circ_buf_get(circ_buf, temp);
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE - i - 1, circ_buf_size(circ_buf));
}
free(temp);
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_reset(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
for(uint8_t i = 0; i < BUFFER_SIZE - 3; ++i) {
circ_buf_put(circ_buf, "Lorem ipsum");
}
circ_buf_reset(circ_buf);
TEST_ASSERT_EQUAL_INT8(0, circ_buf_size(circ_buf));
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE, circ_buf_capacity(circ_buf));
TEST_ASSERT_TRUE(circ_buf_empty(circ_buf));
TEST_ASSERT_FALSE(circ_buf_full(circ_buf));
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_circ_buf_element_size(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
TEST_ASSERT_EQUAL_INT8(BUFFER_ELEMENT_SIZE, circ_buf_element_size(circ_buf));
circ_buf_put(circ_buf, "Lorem ipsum");
circ_buf_put(circ_buf, "Lorem ipsum");
TEST_ASSERT_EQUAL_INT8(BUFFER_ELEMENT_SIZE, circ_buf_element_size(circ_buf));
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
circ_buf_get(circ_buf, temp);
free(temp);
TEST_ASSERT_EQUAL_INT8(BUFFER_ELEMENT_SIZE, circ_buf_element_size(circ_buf));
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_advance_pointer(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
advance_pointer(circ_buf);
TEST_ASSERT_EQUAL_INT8(1, circ_buf_size(circ_buf));
advance_pointer(circ_buf);
TEST_ASSERT_EQUAL_INT8(2, circ_buf_size(circ_buf));
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_retreat_pointer(void) {
char** buffer = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf = circ_buf_init(buffer, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
for(uint8_t i = 0; i < BUFFER_SIZE - 3; ++i) {
circ_buf_put(circ_buf, "Lorem ipsum");
}
retreat_pointer(circ_buf);
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE - 4, circ_buf_size(circ_buf));
retreat_pointer(circ_buf);
TEST_ASSERT_EQUAL_INT8(BUFFER_SIZE - 5, circ_buf_size(circ_buf));
circ_buf_free(circ_buf);
free_buffer(buffer);
free(buffer);
}
void test_diff_bufs(void) {
char** buffer1 = (char **) malloc(BUFFER_SIZE * sizeof(char *));
char** buffer2 = (char **) malloc(BUFFER_SIZE * sizeof(char *));
for (uint8_t buff_el = 0; buff_el < BUFFER_SIZE; ++buff_el) {
buffer1[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
buffer2[buff_el] = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
}
cbuf_handle_t circ_buf1 = circ_buf_init(buffer1, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
cbuf_handle_t circ_buf2 = circ_buf_init(buffer2, BUFFER_SIZE, BUFFER_ELEMENT_SIZE);
char* temp = (char *) malloc(BUFFER_ELEMENT_SIZE * sizeof(char));
for(uint8_t i = 0; i < (BUFFER_SIZE - 2); ++i) {
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i);
circ_buf_put(circ_buf1, temp);
snprintf(temp, BUFFER_ELEMENT_SIZE, "string_%d", i + 2);
circ_buf_put(circ_buf2, temp);
}
free(temp);
char** add1 = NULL;
char** add2 = NULL;
diff_bufs(circ_buf1, circ_buf2, &add1, &add2);
TEST_ASSERT_NOT_NULL(add1[0]);
TEST_ASSERT_NOT_NULL(add2[0]);
TEST_ASSERT_EQUAL_STRING("string_6", add1[0]);
TEST_ASSERT_EQUAL_STRING("string_7", add1[1]);
TEST_ASSERT_EQUAL_STRING(EOB, add1[2]);
TEST_ASSERT_EQUAL_STRING("string_0", add2[0]);
TEST_ASSERT_EQUAL_STRING("string_1", add2[1]);
TEST_ASSERT_EQUAL_STRING(EOB, add2[2]);
circ_buf_free(circ_buf1);
free_buffer(buffer1);
free(buffer1);
circ_buf_free(circ_buf2);
free_buffer(buffer2);
free(buffer2);
}

107
test/test_message.c

@ -0,0 +1,107 @@
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "unity.h"
#include "message.h"
struct message_t {
char *message;
uint16_t received_from, *sent_to;
observer_func *observers;
int message_length, num_sent_to, num_observers;
};
void test_message_init(void) {
const char message[] = "testing";
message_handle_t message_handle = message_init(message, strlen(message), 0);
TEST_ASSERT_NOT_NULL(message_handle);
TEST_ASSERT_EQUAL_INT(strlen(message), message_handle->message_length);
TEST_ASSERT_EQUAL_INT(0, message_handle->num_sent_to);
TEST_ASSERT_EQUAL_INT(0, message_handle->num_observers);
message_free(message_handle);
}
void test_message_add_sent_to(void) {
const char message[] = "testing";
message_handle_t message_handle = message_init(message, strlen(message), 0);
const uint16_t expected[] = {4, 345, 26463, 35, 43663, 347, 3262};
for (int i = 0; i < 7; ++i) {
message_add_sent_to(message_handle, expected[i]);
}
TEST_ASSERT_EQUAL_UINT16_ARRAY(expected, message_handle->sent_to, 7);
message_free(message_handle);
}
void test_message_get(void) {
const char expected[] = "testing";
message_handle_t message_handle = message_init(expected, strlen(expected), 0);
int message_length = -1;
char *actual = message_get(message_handle, &message_length);
TEST_ASSERT_EQUAL_UINT16(strlen(expected), message_length);
TEST_ASSERT_EQUAL_STRING_LEN(expected, actual, message_length);
free(actual);
message_free(message_handle);
}
void test_message_sent_to(void) {
const char message[] = "testing";
message_handle_t message_handle = message_init(message, strlen(message), 0);
const uint16_t expected[] = {4, 345, 26463, 35, 43663, 347, 3262};
for (int i = 0; i < 7; ++i) {
message_add_sent_to(message_handle, expected[i]);
}
TEST_ASSERT_EQUAL_INT(7, message_handle->num_sent_to);
TEST_ASSERT_TRUE(message_sent_to(message_handle, 345));
TEST_ASSERT_TRUE(message_sent_to(message_handle, 43663));
TEST_ASSERT_TRUE(message_sent_to(message_handle, 347));
TEST_ASSERT_FALSE(message_sent_to(message_handle, 0));
TEST_ASSERT_FALSE(message_sent_to(message_handle, -1));
TEST_ASSERT_FALSE(message_sent_to(message_handle, 348));
message_free(message_handle);
}
bool globalTestVariable = false;
void test_observer(void) {
globalTestVariable = true;
}
void test_message_attach_observer(void) {
const char message[] = "testing";
message_handle_t message_handle = message_init(message, strlen(message), 0);
message_attach_observer(message_handle, test_observer);
TEST_ASSERT_EQUAL_INT(1, message_handle->num_observers);
TEST_ASSERT_NOT_NULL(message_handle->observers);
TEST_ASSERT_EQUAL_PTR(test_observer, message_handle->observers[0]);
message_free(message_handle);
}
void test_message_state_changed(void) {
const char message[] = "testing";
message_handle_t message_handle = message_init(message, strlen(message), 0);
message_attach_observer(message_handle, &test_observer);
globalTestVariable = false;
message_state_changed(message_handle);
TEST_ASSERT_TRUE(globalTestVariable);
message_free(message_handle);
}

176
test/test_node.c

@ -1,176 +0,0 @@
#include <stdlib.h>
#include "unity.h"
#include "node.h"
struct node_t {
struct sockaddr_in addr;
uint64_t** events;
uint64_t appearance_duration;
uint8_t events_size;
node_status _node_status;
};
void test_node_init(void) {
struct sockaddr_in myaddr;
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(2288);
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
node_handle_t node = node_init(myaddr);
TEST_ASSERT_NOT_NULL(node);
node_free(node);
}
void test_node_add_timestamp(void) {
struct sockaddr_in myaddr;
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(2288);
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
node_handle_t node = node_init(myaddr);
time_t base_time = time(NULL);
node_add_timestamp(node, base_time - 15, true);
TEST_ASSERT_EQUAL_MEMORY(base_time - 15, node->events[0][0], sizeof(time_t));
TEST_ASSERT_EQUAL_MEMORY(0, node->events[1][0], sizeof(time_t));
node_add_timestamp(node, base_time - 10, false);
TEST_ASSERT_EQUAL_MEMORY(base_time - 10, node->events[1][0], sizeof(time_t));
node_add_timestamp(node, base_time - 5, true);
TEST_ASSERT_EQUAL_MEMORY(base_time - 5, node->events[0][1], sizeof(time_t));
TEST_ASSERT_EQUAL_MEMORY(0, node->events[1][1], sizeof(time_t));
node_add_timestamp(node, base_time, false);
TEST_ASSERT_EQUAL_MEMORY(base_time, node->events[1][1], sizeof(time_t));
node_add_timestamp(node, base_time + 5, false);
TEST_ASSERT_EQUAL_MEMORY(base_time, node->events[1][1], sizeof(time_t));
node_add_timestamp(node, base_time + 10, true);
TEST_ASSERT_EQUAL_MEMORY(base_time + 10, node->events[0][2], sizeof(time_t));
TEST_ASSERT_EQUAL_MEMORY(0, node->events[1][2], sizeof(time_t));
node_free(node);
}
void test_node_get_addr(void){
struct sockaddr_in myaddr;
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(2288);
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
node_handle_t node = node_init(myaddr);
struct sockaddr_in actual = node_get_addr(node);
TEST_ASSERT_EQUAL_MEMORY(&myaddr, &actual, sizeof(myaddr));
node_free(node);
}
void test_node_get_status(void){
struct sockaddr_in myaddr;
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(2288);
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
node_handle_t node = node_init(myaddr);
TEST_ASSERT_EQUAL_INT(NODE_INITIALIAZED, node_get_status(node));
node_add_timestamp(node, time(NULL), true);
TEST_ASSERT_EQUAL_INT(NODE_PRESENT, node_get_status(node));
node_add_timestamp(node, time(NULL), false);
TEST_ASSERT_EQUAL_INT(NODE_GONE, node_get_status(node));
node_free(node);
}
void test_node_get_latest_appearance_duration(void){
struct sockaddr_in myaddr;
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(2288);
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
node_handle_t node = node_init(myaddr);
time_t base_time = time(NULL);
node_add_timestamp(node, base_time - 10, true);
TEST_ASSERT_UINT8_WITHIN(1, 10, node_get_latest_appearance_duration(node));
node_add_timestamp(node, base_time + 10, false);
TEST_ASSERT_EQUAL_UINT8(20, node_get_latest_appearance_duration(node));
node_free(node);
}
void test_node_get_total_appearance_duration(void){
struct sockaddr_in myaddr;
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(2288);
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
node_handle_t node = node_init(myaddr);
time_t base_time = time(NULL);
node_add_timestamp(node, base_time - 30, true);
node_add_timestamp(node, base_time - 25, false);
TEST_ASSERT_EQUAL_UINT8(5, node_get_total_appearance_duration(node));
node_add_timestamp(node, base_time - 12, true);
node_add_timestamp(node, base_time - 5, false);
TEST_ASSERT_EQUAL_UINT8(12, node_get_total_appearance_duration(node));
node_free(node);
}
void test_node_get_event_table(void){
struct sockaddr_in myaddr;
myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(2288);
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
node_handle_t node = node_init(myaddr);
time_t base_time = time(NULL);
node_add_timestamp(node, base_time - 15, true);
node_add_timestamp(node, base_time - 10, false);
node_add_timestamp(node, base_time - 5, true);
node_add_timestamp(node, base_time, false);
node_add_timestamp(node, base_time + 5, false);
node_add_timestamp(node, base_time + 10, true);
time_t** event_table;
uint8_t num_entries = node_get_event_table(node, &event_table);
TEST_ASSERT_EQUAL_UINT8(3, num_entries);
TEST_ASSERT_NOT_NULL(event_table);
time_t** expected_table = (time_t**) malloc(2 * sizeof(time_t *));
expected_table[0] = (time_t*) malloc(3 * sizeof(time_t));
expected_table[1] = (time_t*) malloc(3 * sizeof(time_t));
expected_table[0][0] = base_time - 15;
expected_table[1][0] = base_time - 10;
expected_table[0][1] = base_time - 5;
expected_table[1][1] = base_time;
expected_table[0][2] = base_time + 10;
expected_table[1][2] = 0;
TEST_ASSERT_EQUAL_MEMORY_ARRAY(expected_table[0], event_table[0], sizeof(time_t), 3);
TEST_ASSERT_EQUAL_MEMORY_ARRAY(expected_table[1], event_table[1], sizeof(time_t), 3);
node_free(node);
}
Loading…
Cancel
Save