Browse Source

Critical fixes

master
Apostolos Fanakis 6 years ago
parent
commit
257c89d8ad
  1. 17
      spike_sorting.m

17
spike_sorting.m

@ -14,11 +14,10 @@
datasetMedians(8) = 0; datasetMedians(8) = 0;
datasetFactors(8) = 0; datasetFactors(8) = 0;
thresholdFactorInitValue = 3; % k starting value thresholdFactorInitValue = 1; % k starting value
thresholdFactorEndValue = 12; % k ending value thresholdFactorEndValue = 7; % k ending value
thresholdFactorStep = 0.01; % k jumping step thresholdFactorStep = 0.01; % k jumping step
numberOfFactors = length(thresholdFactorInitValue:thresholdFactorStep:thresholdFactorEndValue); numberOfFactors = length(thresholdFactorInitValue:thresholdFactorStep:thresholdFactorEndValue);
numberOfSpikesPerFactor(numberOfFactors) = 0;
for fileIndex=1:8 for fileIndex=1:8
fprintf('Loading test dataset no. %d\n', fileIndex); fprintf('Loading test dataset no. %d\n', fileIndex);
@ -38,6 +37,7 @@ for fileIndex=1:8
%% Q.1.2 %% Q.1.2
dataMedian = median(abs(data)/0.6745); dataMedian = median(abs(data)/0.6745);
datasetMedians(fileIndex) = dataMedian; datasetMedians(fileIndex) = dataMedian;
numberOfSpikesPerFactor(numberOfFactors) = 0;
for factorIteration=1:numberOfFactors % runs for each k for factorIteration=1:numberOfFactors % runs for each k
% builds threshold % builds threshold
@ -84,6 +84,7 @@ for fileIndex=1:8
clear Dataset clear Dataset
clear data clear data
clear numberOfSpikesPerFactor
end end
fprintf('\n'); fprintf('\n');
@ -95,7 +96,7 @@ xlabel('Dataset median');
ylabel('Threshold factor'); ylabel('Threshold factor');
hold on; hold on;
empiricalRule = polyfit(datasetMedians, datasetFactors, 8); empiricalRule = polyfit(datasetMedians, datasetFactors, 1);
visualizationX = linspace(0, 0.5, 50); visualizationX = linspace(0, 0.5, 50);
visualizationY = polyval(empiricalRule, visualizationX); visualizationY = polyval(empiricalRule, visualizationX);
plot(visualizationX, visualizationY); plot(visualizationX, visualizationY);
@ -118,8 +119,8 @@ for fileIndex=1:4
%% Q.2.1 and Q.2.2 %% Q.2.1 and Q.2.2
dataMedian = median(abs(data)/0.6745); dataMedian = median(abs(data)/0.6745);
%factorEstimation = polyval(empiricalRule, dataMedian); factorEstimation = polyval(empiricalRule, dataMedian);
factorEstimation = 4; %factorEstimation = 4;
threshold = factorEstimation * dataMedian; threshold = factorEstimation * dataMedian;
numberOfSpikes = 0; numberOfSpikes = 0;
spikesTimesEst(2500) = 0; spikesTimesEst(2500) = 0;
@ -144,6 +145,8 @@ for fileIndex=1:4
% spike found % spike found
numberOfSpikes = numberOfSpikes + 1; numberOfSpikes = numberOfSpikes + 1;
spikeStartIndex = sample; spikeStartIndex = sample;
% Q.2.1
spikesTimesEst(numberOfSpikes) = spikeStartIndex;
% skips cheking until values are below threshold again % skips cheking until values are below threshold again
while sample <= length(data) while sample <= length(data)
@ -163,8 +166,6 @@ for fileIndex=1:4
% occurs first % occurs first
firstIndex = min([absoluteMaxIndex absoluteMinIndex]); firstIndex = min([absoluteMaxIndex absoluteMinIndex]);
% Q.2.1
spikesTimesEst(numberOfSpikes) = firstIndex;
% Q.2.2 % Q.2.2
spikesEst(numberOfSpikes, :) = data(firstIndex-34:firstIndex+29); spikesEst(numberOfSpikes, :) = data(firstIndex-34:firstIndex+29);
break; break;

Loading…
Cancel
Save