Apostolos Fanakis
6 years ago
14 changed files with 199 additions and 0 deletions
@ -0,0 +1,36 @@ |
|||||
|
# Biomedical Technology Assignment 2018, AUTH |
||||
|
> Spike sorting of filtered LFP recordings dataset using machine learning |
||||
|
|
||||
|
## Table of Contents |
||||
|
|
||||
|
- [Clone](#Clone) |
||||
|
- [Execution](#execution) |
||||
|
- [Support](#support) |
||||
|
- [License](#license) |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
## Clone |
||||
|
|
||||
|
Clone this repo to your local machine using `https://gitlab.com/Apostolof/biomedicaltechnologyassignment2018.git` |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
## Execution |
||||
|
|
||||
|
Scripts were written and tested in Matlab R2016a (v9.0.0.341360). Any newer version of the software should also be able to execute the scripts without problems. |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
## Support |
||||
|
|
||||
|
Reach out to us: |
||||
|
|
||||
|
- [apostolof's email](mailto:apotwohd@gmail.com "apotwohd@gmail.com") |
||||
|
- [charaldp's email](mailto:charaldp@ece.auth.gr "charaldp@ece.auth.gr") |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
## License |
||||
|
|
||||
|
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://gitlab.com/Apostolof/biomedicaltechnologyassignment2018/blob/master/LICENSE) |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,163 @@ |
|||||
|
%% AUTHOR[1] : Apostolos Fanakis (8261) |
||||
|
%% EMAIL[1] : apostolof@auth.gr |
||||
|
%% AUTHOR[2] : Charalampos Papadiakos (8302) |
||||
|
%% EMAIL[2] : charaldp@ece.auth.gr |
||||
|
%% AUTHOR[3] : Hlektra Mitsi () |
||||
|
%% EMAIL[3] : |
||||
|
%% $DATE : 28-December-2018 12:45:00 $ |
||||
|
%% $Revision : 1.00 $ |
||||
|
%% DEVELOPED : 9.0.0.341360 (R2016a) |
||||
|
%% FILENAME : spike_sorting.m |
||||
|
%% |
||||
|
%% ================================================================================================= |
||||
|
%% S.1 |
||||
|
clear |
||||
|
|
||||
|
datasetMedians = zeros(8); |
||||
|
datasetFactors = zeros(8); |
||||
|
|
||||
|
for fileIndex=1:8 |
||||
|
fprintf('Loading test dataset no. %d\n', fileIndex); |
||||
|
filename = sprintf('dataset\\Data_Test_%d.mat', fileIndex); |
||||
|
Dataset = load(filename); |
||||
|
data = double(Dataset.data); |
||||
|
|
||||
|
%% Q.1.1 |
||||
|
figure(); |
||||
|
plot(data(1:10000)); |
||||
|
xlim([0, 10000]); |
||||
|
title(['First 10000 samples of dataset #' num2str(fileIndex)]); |
||||
|
xlabel('Sample #'); |
||||
|
ylabel('Trivial Unit'); %TODO: Is this mVolts? |
||||
|
drawnow; |
||||
|
|
||||
|
%% Q.1.2 |
||||
|
dataMedian = median(abs(data)/0.6745); |
||||
|
datasetMedians(fileIndex) = dataMedian; |
||||
|
|
||||
|
thresholdFactorInitValue = 2; % k starting value |
||||
|
thresholdFactorEndValue = 14; % k ending value |
||||
|
thresholdFactorStep = 0.01; % k jumping step |
||||
|
numberOfFactors = length(thresholdFactorInitValue:thresholdFactorStep:thresholdFactorEndValue); |
||||
|
numberOfSpikesPerFactor = zeros(numberOfFactors); |
||||
|
|
||||
|
parfor factorIteration=1:numberOfFactors % runs for each k |
||||
|
% builds threshold |
||||
|
thresholdFactor = thresholdFactorInitValue + (factorIteration - 1) * thresholdFactorStep; |
||||
|
threshold = thresholdFactor * dataMedian; |
||||
|
|
||||
|
% calculates number of spikes |
||||
|
sample = 1; |
||||
|
while sample <= length(data) |
||||
|
if data(sample) >= threshold |
||||
|
% spike found |
||||
|
numberOfSpikesPerFactor(factorIteration) = numberOfSpikesPerFactor(factorIteration) + 1; |
||||
|
|
||||
|
% skips cheking until values are below threshold again |
||||
|
while sample <= length(data) |
||||
|
sample = sample + 1; |
||||
|
if (data(sample) <= threshold) |
||||
|
break; |
||||
|
end |
||||
|
end |
||||
|
end |
||||
|
sample = sample + 1; |
||||
|
end |
||||
|
end |
||||
|
|
||||
|
figure(); |
||||
|
% trims zeros |
||||
|
numberOfSpikesTrimmed = numberOfSpikesPerFactor(1:find(numberOfSpikesPerFactor,1,'last')); |
||||
|
endValue = thresholdFactorInitValue + thresholdFactorStep * (length(numberOfSpikesTrimmed) - 1); |
||||
|
plot(thresholdFactorInitValue:thresholdFactorStep:endValue, numberOfSpikesTrimmed); |
||||
|
title(['Number of spikes for different values of k for dataset #' num2str(fileIndex)]); |
||||
|
xlabel('Threshold factor (k)'); |
||||
|
ylabel('Number of spikes'); |
||||
|
hold on; |
||||
|
plot([thresholdFactorInitValue endValue], [Dataset.spikeNum, Dataset.spikeNum]); |
||||
|
xlim([thresholdFactorInitValue endValue]); |
||||
|
drawnow; |
||||
|
hold off; |
||||
|
|
||||
|
% finds dataset's theshold factor k that produces the closest number of |
||||
|
% spikes ot the ground truth |
||||
|
[minValue, closestIndex] = min(abs(numberOfSpikesTrimmed-Dataset.spikeNum)); |
||||
|
datasetFactors(fileIndex) = thresholdFactorInitValue + (closestIndex - 1) * thresholdFactorStep; |
||||
|
|
||||
|
clear {dataset, data} |
||||
|
end |
||||
|
|
||||
|
%% Q.1.3 |
||||
|
figure(); |
||||
|
title('Polynomial curve fitting on median-threshold factor value pairs'); |
||||
|
xlabel('Dataset median'); |
||||
|
ylabel('Threshold factor'); |
||||
|
plot(datasetMedians, datasetFactors, 'o'); |
||||
|
hold on; |
||||
|
empiricalRule = polyfit(datasetMedians, datasetFactors, 8); |
||||
|
visualizationX = linspace(0, 0.5, 50); |
||||
|
visualizationY = polyval(empiricalRule, visualizationX); |
||||
|
plot(visualizationX, visualizationY); |
||||
|
hold off |
||||
|
|
||||
|
%% ================================================================================================= |
||||
|
%% S.2 |
||||
|
clearvars closestIndex datasetFactors datasetMedians endValue minValue numberOfFactors ... |
||||
|
numberOfSpikesPerFactor numberOfSpikesTrimmed thresholdFactorEndValue thresholdFactorInitValue ... |
||||
|
thresholdFactorStep visualizationX visualizationY |
||||
|
|
||||
|
for fileIndex=1:4 |
||||
|
fprintf('Loading evaluation dataset no. %d \n', fileIndex); |
||||
|
filename = sprintf('dataset\\Data_Eval_E_%d.mat', fileIndex); |
||||
|
Dataset = load(filename); |
||||
|
data = double(Dataset.data); |
||||
|
|
||||
|
%% Q.2.1 and Q.2.2 |
||||
|
dataMedian = median(abs(data)/0.6745); |
||||
|
|
||||
|
factorEstimation = polyval(empiricalRule, dataMedian); |
||||
|
threshold = factorEstimation * dataMedian; |
||||
|
numberOfSpikes = 0; |
||||
|
spikesTimesEst(2500) = 0; |
||||
|
spikesEst(2500, 64) = 0; |
||||
|
|
||||
|
% calculates number of spikes |
||||
|
spikeStartIndex = 1; |
||||
|
spikeEndIndex = 1; |
||||
|
sample = 1; |
||||
|
while sample <= length(data) |
||||
|
if data(sample) >= threshold |
||||
|
% spike found |
||||
|
numberOfSpikes = numberOfSpikes + 1; |
||||
|
|
||||
|
% skips cheking until values are below threshold again |
||||
|
while sample <= length(data) |
||||
|
sample = sample + 1; |
||||
|
if (data(sample) <= threshold) |
||||
|
spikeEndIndex = sample; |
||||
|
[~, minIndex] = min(data(spikeStartIndex:spikeEndIndex)); |
||||
|
[~, maxIndex] = max(data(spikeStartIndex:spikeEndIndex)); |
||||
|
firstIndex = min([minIndex maxIndex]); |
||||
|
% Q.2.1 |
||||
|
spikesTimesEst(numberOfSpikes) = firstIndex; |
||||
|
% Q.2.2 |
||||
|
spikesEst(numberOfSpikes, :) = data(firstIndex-34:firstIndex+29); |
||||
|
break; |
||||
|
end |
||||
|
end |
||||
|
end |
||||
|
sample = sample + 1; |
||||
|
end |
||||
|
|
||||
|
fprintf('%d spikes found for dataset #%d\n', numberOfSpikes, fileIndex); |
||||
|
fprintf('actial number of spikes = %d\n', length(Dataset.spikeTimes)); |
||||
|
fprintf('diff = %d\n\n', abs(length(Dataset.spikeTimes) - numberOfSpikes)); |
||||
|
|
||||
|
figure(); |
||||
|
hold on; |
||||
|
for spike=1:numberOfSpikes |
||||
|
plot(1:64, spikesEst(spike, :)); |
||||
|
end |
||||
|
drawnow; |
||||
|
hold off; |
||||
|
end |
Loading…
Reference in new issue