Browse Source

Init visualization, Add compined wav test file

master
Apostolos Fanakis 6 years ago
parent
commit
370318bef0
No known key found for this signature in database GPG Key ID: 56CE2DEDE9F1FB78
  1. BIN
      classifier/compined.wav
  2. 1
      classifier/feature_extraction/feature_extractor.py
  3. 13
      classifier/pipeline.py
  4. 0
      classifier/training/model_training.py
  5. 17
      classifier/visualization/visualization.py

BIN
classifier/compined.wav

Binary file not shown.

1
classifier/feature_extraction/feature_extractor.py

@ -1,4 +1,3 @@
# import essentia.standard
import essentia
from essentia.standard import (MonoLoader, Windowing, Spectrum, MFCC,
ZeroCrossingRate, SpectralCentroidTime, RollOff, Flux, Envelope,

13
classifier/pipeline.py

@ -1,7 +1,8 @@
import numpy as np
from feature_extraction.feature_extractor import extractFeatures
from feature_extraction.batch_feature_extractor import batchExtract
from preprocessing.data_preprocessing import createSingleFeaturesArray, standardization, PCA
from classification_model_training.model_training import simpleTrain, kFCrossValid
from preprocessing.data_preprocessing import arrayFromJSON, createSingleFeaturesArray, standardization, PCA
from training.model_training import simpleTrain, kFCrossValid
batchExtract('../dataset/music_wav/', 'feature_extraction/music_features/', 22050)
batchExtract('../dataset/speech_wav/', 'feature_extraction/speech_features/', 22050)
@ -14,4 +15,10 @@ dataset = standardization(dataset)
# dataset = PCA(dataset)
print('Simple train accuracy achieved = ' + str(simpleTrain(dataset, target)))
kFCrossValid(dataset, target, model = 'svm')
kFCrossValid(dataset, target, model = 'rndForest')
clf = kFCrossValid(dataset, target, model = 'rndForest')
extractFeatures('compined.wav', 'featuresStream/tmp.json', 22050)
values = arrayFromJSON('featuresStream/tmp.json')[1]
values = standardization(values)
audioClass = clf.predict(values)
print(audioClass)

0
classifier/classification_model_training/model_training.py → classifier/training/model_training.py

17
classifier/visualization/visualization.py

@ -0,0 +1,17 @@
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
datasetArray = np.load('../preprocessing/dataset.npy')
target = np.load('../preprocessing/target.npy')
featureKeysVector = np.load('../preprocessing/featureKeys.npy')
dataset = pd.DataFrame(datasetArray)
dataset.columns = featureKeysVector
sns.relplot(x="4HzMod", y="Flat", data=dataset[["4HzMod", "Flat"]], hue = target, style = target)
sns.jointplot(x="SLAtt", y="ZCR", data=dataset[["SLAtt", "ZCR"]]);
sns.pairplot(data=dataset[["SDec", "Flat", "mfcc2", "HFC"]]);
plt.show()
Loading…
Cancel
Save