Browse Source

Change DB-SCAN parameters per dataset

master
Apostolos Fanakis 6 years ago
parent
commit
2d8933d841
  1. 23
      spike_sorting.m

23
spike_sorting.m

@ -118,7 +118,7 @@ for fileIndex=1:4
%% Q.2.1 and Q.2.2 %% Q.2.1 and Q.2.2
dataMedian = median(abs(data)/0.6745); dataMedian = median(abs(data)/0.6745);
factorEstimation = polyval(empiricalRule, dataMedian); %factorEstimation = polyval(empiricalRule, dataMedian);
factorEstimation = 4; factorEstimation = 4;
threshold = factorEstimation * dataMedian; threshold = factorEstimation * dataMedian;
numberOfSpikes = 0; numberOfSpikes = 0;
@ -260,7 +260,21 @@ for fileIndex=1:4
% clustering using DB-SCAN algorithm % clustering using DB-SCAN algorithm
% code for DB-SCAN downloaded from here: % code for DB-SCAN downloaded from here:
% https://www.peterkovesi.com/matlabfns/ % https://www.peterkovesi.com/matlabfns/
[~, dbScanClasses, ~] = dbscan(features(:, 6:7)', 0.4, 20); if fileIndex == 1
distThreshold = 0.4;
minPts = 20;
elseif fileIndex == 2
distThreshold = 0.15;
minPts = 30;
elseif fileIndex == 3
distThreshold = 0.32;
minPts = 30;
else
distThreshold = 0.36;
minPts = 35;
end
[~, dbScanClasses, ~] = dbscan(features(:, 6:7)', distThreshold, minPts);
% fixes classes enumeration % fixes classes enumeration
dbScanClasses(dbScanClasses==1) = 7; dbScanClasses(dbScanClasses==1) = 7;
dbScanClasses(dbScanClasses==3) = 1; dbScanClasses(dbScanClasses==3) = 1;
@ -293,12 +307,11 @@ for fileIndex=1:4
scatter(features(hierarchicalClusters == 2, 6), features(hierarchicalClusters == 2, 7), [], 'r', '*'); scatter(features(hierarchicalClusters == 2, 6), features(hierarchicalClusters == 2, 7), [], 'r', '*');
scatter(features(hierarchicalClusters == 3, 6), features(hierarchicalClusters == 3, 7), [], 'g', '*'); scatter(features(hierarchicalClusters == 3, 6), features(hierarchicalClusters == 3, 7), [], 'g', '*');
scatter(features(hierarchicalClusters == 1, 6), features(hierarchicalClusters == 1, 7), [], 'b', '*'); scatter(features(hierarchicalClusters == 1, 6), features(hierarchicalClusters == 1, 7), [], 'b', '*');
title(['Dataset #' num2str(fileIndex) ' feature plot after clustering with K-Means']); title(['Dataset #' num2str(fileIndex) ' feature plot after clustering with hierarchical clustering']);
xlabel('PCA feature 1'); xlabel('PCA feature 1');
ylabel('PCA feature 2'); ylabel('PCA feature 2');
accuracy = classperf(spikeClass',hierarchicalClusters); accuracy = classperf(spikeClass',hierarchicalClusters);
fprintf('Accuracy achieved with K-Means is %.2f%%\n\n', accuracy.CorrectRate*100); fprintf('Accuracy achieved with hierarchical clustering is %.2f%%\n\n', accuracy.CorrectRate*100);
% clustering using kmeans algorithm % clustering using kmeans algorithm
rng(1); % For reproducibility rng(1); % For reproducibility

Loading…
Cancel
Save